State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
Yuanpei College, Peking University, Beijing 100871, China.
Analyst. 2022 Sep 26;147(19):4326-4336. doi: 10.1039/d2an01124g.
As an indispensable genetically encoded optical method for detecting and visualizing protein-protein interactions (PPIs) directly in live cells, bimolecular fluorescence complementation (BiFC) assay has gained popularity over the past decade mainly because of its high sensitivity and easy usage. However, most existing fluorescent protein-based BiFC (FP-BiFC) assays still suffer from relatively low specificity or imaging signal-to-noise (S/N) ratios. Thus, developing high S/N ratio BiFC probes, especially in the widely used bright green-yellow region of the spectrum is very meaningful. In addition, synthetic engineering of BiFC probes which can be readily used for multiplexing imaging is also highly valuable for uncovering more or new layers of information on PPIs. In this report, we developed a bright stable green fluorescent protein Springgreen-M based on our previously evolved fast reversible photoswitching fluorescent protein (RSFP) GMars-T. We then established a novel BiFC assay based on Springgreen-M for imaging PPIs in live cells with high specificity. Combined with the same lineage, BiFC assays readily developed from photoconvertible fluorescent protein mMaple3 or reversibly photoswitchable fluorescent protein GMars-T, high specificity multiplexing imaging of PPIs could also be realized in the same live cell. Thus, our newly developed Springgreen-M and Springgreen-M-based BiFC probes will meet the urgent need for high-specificity BiFC detection, flexible visualization and screening of PPIs in live cells.
作为一种在活细胞中直接检测和可视化蛋白质-蛋白质相互作用(PPIs)的不可或缺的遗传编码光学方法,双分子荧光互补(BiFC)检测在过去十年中变得越来越流行,主要是因为它具有高灵敏度和易于使用的特点。然而,大多数现有的基于荧光蛋白的 BiFC(FP-BiFC)检测仍然存在相对较低的特异性或成像信号噪声(S/N)比。因此,开发高 S/N 比的 BiFC 探针,特别是在广泛使用的明亮的绿黄色光谱区域,是非常有意义的。此外,BiFC 探针的合成工程,可用于多重成像,对于揭示 PPI 更多或新的信息层也具有很高的价值。在本报告中,我们基于我们之前进化的快速可逆光开关荧光蛋白(RSFP)GMars-T,开发了一种明亮稳定的绿色荧光蛋白 Springgreen-M。然后,我们建立了一种基于 Springgreen-M 的新型 BiFC 检测方法,用于在活细胞中对 PPIs 进行高特异性成像。结合同一谱系,基于光可转化荧光蛋白 mMaple3 或可逆光开关荧光蛋白 GMars-T 很容易开发的 BiFC 检测,也可以在同一个活细胞中实现高特异性的多重 PPI 成像。因此,我们新开发的 Springgreen-M 和基于 Springgreen-M 的 BiFC 探针将满足在活细胞中进行高特异性 BiFC 检测、灵活可视化和 PPI 筛选的迫切需求。