Suppr超能文献

双分子荧光互补光激活定位显微镜技术(BiFC-PALM)

Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM).

作者信息

Nickerson Andrew, Huang Tao, Lin Li-Jung, Nan Xioalin

机构信息

Department of Biomedical Engineering, Oregon Health and Science University; Knight Cancer Institute, Oregon Health and Science University; OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University.

Department of Biomedical Engineering, Oregon Health and Science University; Knight Cancer Institute, Oregon Health and Science University; OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University;

出版信息

J Vis Exp. 2015 Dec 22(106):e53154. doi: 10.3791/53154.

Abstract

Protein-protein interactions (PPIs) are key molecular events to biology. However, it remains a challenge to visualize PPIs with sufficient resolution and sensitivity in cells because the resolution of conventional light microscopy is diffraction-limited to ~250 nm. By combining bimolecular fluorescence complementation (BiFC) with photoactivated localization microscopy (PALM), PPIs can be visualized in cells with single molecule sensitivity and nanometer spatial resolution. BiFC is a commonly used technique for visualizing PPIs with fluorescence contrast, which involves splitting of a fluorescent protein into two non-fluorescent fragments. PALM is a recent superresolution microscopy technique for imaging biological samples at the nanometer and single molecule scales, which uses phototransformable fluorescent probes such as photoactivatable fluorescent proteins (PA-FPs). BiFC-PALM was demonstrated by splitting PAmCherry1, a PA-FP compatible with PALM, for its monomeric nature, good single molecule brightness, high contrast ratio, and utility for stoichiometry measurements. When split between amino acids 159 and 160, PAmCherry1 can be made into a BiFC probe that reconstitutes efficiently at 37 °C with high specificity to PPIs and low non-specific reconstitution. Ras-Raf interaction is used as an example to show how BiFC-PALM helps to probe interactions at the nanometer scale and with single molecule resolution. Their diffusion can also be tracked in live cells using single molecule tracking (smt-) PALM. In this protocol, factors to consider when designing the fusion proteins for BiFC-PALM are discussed, sample preparation, image acquisition, and data analysis steps are explained, and a few exemplary results are showcased. Providing high spatial resolution, specificity, and sensitivity, BiFC-PALM is a useful tool for studying PPIs in intact biological samples.

摘要

蛋白质-蛋白质相互作用(PPIs)是生物学中的关键分子事件。然而,在细胞中以足够的分辨率和灵敏度可视化PPIs仍然是一项挑战,因为传统光学显微镜的分辨率受衍射限制,约为250纳米。通过将双分子荧光互补(BiFC)与光激活定位显微镜(PALM)相结合,可以在细胞中以单分子灵敏度和纳米空间分辨率可视化PPIs。BiFC是一种常用的利用荧光对比度可视化PPIs的技术,它涉及将荧光蛋白分裂成两个无荧光的片段。PALM是一种用于在纳米和单分子尺度对生物样品进行成像的超分辨率显微镜技术,它使用可光转化的荧光探针,如光激活荧光蛋白(PA-FPs)。BiFC-PALM通过将与PALM兼容的PA-FP PAmCherry1分裂来证明,这是因为它具有单体性质、良好的单分子亮度、高对比度以及用于化学计量测量的实用性。当在氨基酸159和160之间分裂时,PAmCherry1可以制成一种BiFC探针,该探针在37°C时能高效重组,对PPIs具有高特异性且非特异性重组率低。以Ras-Raf相互作用为例,展示了BiFC-PALM如何有助于在纳米尺度和单分子分辨率下探测相互作用。它们的扩散也可以在活细胞中使用单分子追踪(smt-)PALM进行追踪。在本方案中,讨论了设计用于BiFC-PALM的融合蛋白时要考虑的因素,解释了样品制备、图像采集和数据分析步骤,并展示了一些示例性结果。BiFC-PALM具有高空间分辨率、特异性和灵敏度,是研究完整生物样品中PPIs的有用工具。

相似文献

4
Spying on protein interactions in living cells with reconstituted scarlet light.
Analyst. 2018 Oct 22;143(21):5161-5169. doi: 10.1039/c8an01223g.
5
Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM.
Methods Cell Biol. 2014;123:273-94. doi: 10.1016/B978-0-12-420138-5.00015-X.
7
Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.
Nat Methods. 2009 Feb;6(2):153-9. doi: 10.1038/nmeth.1298. Epub 2009 Jan 25.
10
Bimolecular fluorescence complementation.
J Vis Exp. 2011 Apr 15(50):2643. doi: 10.3791/2643.

引用本文的文献

1
Multiplexed and Millimeter-Scale Fluorescence Nanoscopy of Cells and Tissue Sections via Prism-Illumination and Microfluidics-Enhanced DNA-PAINT.
Chem Biomed Imaging. 2023 Oct 12;1(9):817-830. doi: 10.1021/cbmi.3c00060. eCollection 2023 Dec 25.
4
Multipair Förster Resonance Energy Transfer via Spectrally Resolved Single-Molecule Detection.
J Phys Chem B. 2022 Aug 11;126(31):5765-5771. doi: 10.1021/acs.jpcb.2c03249. Epub 2022 Jul 27.
6
An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer.
Cell Rep Med. 2022 Feb 15;3(2):100525. doi: 10.1016/j.xcrm.2022.100525.
7
Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging.
Biophys J. 2018 Jan 23;114(2):301-310. doi: 10.1016/j.bpj.2017.11.013.

本文引用的文献

1
Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange.
Nat Methods. 2015 Mar;12(3):195-8. doi: 10.1038/nmeth.3261. Epub 2015 Jan 26.
2
Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking.
Mol Biol Cell. 2014 Dec 15;25(25):4166-73. doi: 10.1091/mbc.E14-06-1133. Epub 2014 Oct 29.
5
Precisely and accurately localizing single emitters in fluorescence microscopy.
Nat Methods. 2014 Mar;11(3):253-66. doi: 10.1038/nmeth.2843.
6
Objective comparison of particle tracking methods.
Nat Methods. 2014 Mar;11(3):281-9. doi: 10.1038/nmeth.2808. Epub 2014 Jan 19.
7
Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18519-24. doi: 10.1073/pnas.1318188110. Epub 2013 Oct 24.
9
Extracting intracellular diffusive states and transition rates from single-molecule tracking data.
Nat Methods. 2013 Mar;10(3):265-9. doi: 10.1038/nmeth.2367. Epub 2013 Feb 10.
10
Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives.
Biotechniques. 2012 Nov;53(5):285-98. doi: 10.2144/000113943.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验