Department of Biomedical Engineering, Knight Cancer Institute, and OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon, United States of America.
PLoS One. 2014 Jun 25;9(6):e100589. doi: 10.1371/journal.pone.0100589. eCollection 2014.
Bimolecular fluorescence complementation (BiFC) has been widely used to visualize protein-protein interactions (PPIs) in cells. Until now, however, the resolution of BiFC has been limited by the diffraction of light to ∼250 nm, much larger than the nanometer scale at which PPIs occur or are regulated. Cellular imaging at the nanometer scale has recently been realized with single molecule superresolution imaging techniques such as photoactivated localization microscopy (PALM). Here we have combined BiFC with PALM to visualize PPIs inside cells with nanometer spatial resolution and single molecule sensitivity. We demonstrated that PAmCherry1, a photoactivatable fluorescent protein commonly used for PALM, can be used as a BiFC probe when split between residues 159 and 160 into two fragments. PAmCherry1 BiFC exhibits high specificity and high efficiency even at 37°C in detecting PPIs with virtually no background from spontaneous reconstitution. Moreover, the reconstituted protein maintains the fast photoconversion, high contrast ratio, and single molecule brightness of the parent PAmCherry1, which enables selective PALM localization of PPIs with ∼18 nm spatial precision. With BiFC-PALM, we studied the interactions between the small GTPase Ras and its downstream effector Raf, and clearly observed nanoscale clustering and diffusion of individual KRas G12D/CRaf RBD (Ras-binding domain) complexes on the cell membrane. These observations provided novel insights into the regulation of Ras/Raf interaction at the molecular scale, which would be difficult with other techniques such as conventional BiFC, fluorescence co-localization or FRET.
双分子荧光互补(BiFC)已广泛用于在细胞内可视化蛋白质-蛋白质相互作用(PPIs)。然而,到目前为止,BiFC 的分辨率受到光的衍射限制,约为 250nm,远大于 PPIs 发生或调节的纳米尺度。最近,随着单分子超分辨率成像技术(如光激活定位显微镜(PALM))的出现,细胞内成像已经达到了纳米尺度。在这里,我们将 BiFC 与 PALM 相结合,以纳米空间分辨率和单分子灵敏度可视化细胞内的 PPIs。我们证明,PAmCherry1 是一种常用于 PALM 的光激活荧光蛋白,当在残基 159 和 160 之间分裂成两个片段时,可以用作 BiFC 探针。PAmCherry1 BiFC 表现出高度特异性和高效率,即使在 37°C 下检测 PPI 时,几乎没有自发重组的背景。此外,重组蛋白保持了母体 PAmCherry1 的快速光转化、高对比度比和单分子亮度,这使得能够以约 18nm 的空间精度选择性地进行 PALM 定位 PPI。使用 BiFC-PALM,我们研究了小 GTPase Ras 与其下游效应物 Raf 之间的相互作用,并清楚地观察到单个 KRas G12D/CRaf RBD(Ras 结合域)复合物在细胞膜上的纳米级聚类和扩散。这些观察结果为分子尺度上 Ras/Raf 相互作用的调节提供了新的见解,这是其他技术(如传统的 BiFC、荧光共定位或 FRET)难以实现的。