Suppr超能文献

基于主体模型的儿童含糖饮料消费研究:对政策与实践的启示

An agent-based model of child sugar-sweetened beverage consumption: implications for policies and practices.

作者信息

Kasman Matt, Hammond Ross A, Purcell Rob, Heuberger Benjamin, Moore Travis R, Grummon Anna H, Wu Allison J, Block Jason P, Hivert Marie-France, Oken Emily, Kleinman Ken

机构信息

Center on Social Dynamics and Policy, Brookings Institution, Washington, DC, USA.

Brown School at Washington University in St. Louis, St. Louis, MO, USA.

出版信息

Am J Clin Nutr. 2022 Oct 6;116(4):1019-1029. doi: 10.1093/ajcn/nqac194.

Abstract

BACKGROUND

A strong body of evidence links young children's intake of sugar-sweetened beverages (SSBs) with myriad negative outcomes.

OBJECTIVES

Our research provides insight into whether and to what extent potential intervention strategies can reduce young children's consumption of SSBs.

METHODS

We built an agent-based model (ABM) of SSB consumption representing participants in the Project Viva longitudinal study between ages 2 and 7 y. In addition to extensive data from Project Viva, our model used nationally representative data as well as recent, high-quality literature. We tested the explanatory power of the model through comparison to consumption patterns observed in the Project Viva cohort. Then, we applied the model to simulate the potential impact of interventions that would reduce SSB availability in 1 or more settings or affect how families receive and respond to pediatrician advice.

RESULTS

Our model produced age-stratified trends in beverage consumption that closely match those observed in Project Viva cohort data. Among the potential interventions we simulated, reducing availability in the home-where young children spend the greatest amount of time-resulted in the largest consumption decrease. Removing access to all SSBs in the home resulted in them consuming 1.23 (95% CI: 1.21, 1.24) fewer servings of SSBs per week on average between the ages of 2 and 7 y, a reduction of ∼60%. By comparison, removing all SSB availability outside of the home (i.e., in schools and childcare) had a smaller impact (0.77; CI: 0.75, 0.78), a reduction of ∼40%.

CONCLUSIONS

These results suggest that interventions reducing SSB availability in the home would have the strongest effects on SSB consumption.

摘要

背景

大量证据表明幼儿摄入含糖饮料(SSB)会带来诸多负面后果。

目的

我们的研究旨在探讨潜在干预策略能否以及在多大程度上减少幼儿对含糖饮料的消费。

方法

我们构建了一个基于主体的含糖饮料消费模型(ABM),该模型以“活力计划”纵向研究中2至7岁的参与者为代表。除了“活力计划”的大量数据外,我们的模型还使用了全国代表性数据以及近期的高质量文献。我们通过与“活力计划”队列中观察到的消费模式进行比较,测试了该模型的解释力。然后,我们应用该模型来模拟干预措施的潜在影响,这些干预措施将减少在一个或多个环境中的含糖饮料供应,或影响家庭如何接受和回应儿科医生的建议。

结果

我们的模型产生了按年龄分层的饮料消费趋势,与“活力计划”队列数据中观察到的趋势密切匹配。在我们模拟的潜在干预措施中,减少家庭中含糖饮料的供应(幼儿在家中度过的时间最长)导致消费量下降最大。去除家庭中所有含糖饮料后,2至7岁的儿童平均每周饮用的含糖饮料份数减少1.23份(95%置信区间:1.21,1.24),减少了约60%。相比之下,去除家庭以外所有场所(即学校和托儿所)的含糖饮料供应影响较小(0.77;置信区间:0.75,0.78),减少了约40%。

结论

这些结果表明,减少家庭中含糖饮料供应的干预措施对含糖饮料消费的影响最大。

相似文献

8

本文引用的文献

2
Sugar-Sweetened Beverage Reduction Policies: Progress and Promise.减少含糖饮料政策:进展与前景
Annu Rev Public Health. 2021 Apr 1;42:439-461. doi: 10.1146/annurev-publhealth-090419-103005. Epub 2021 Nov 30.
3
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
5
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验