Suppr超能文献

基于外泌体 circRNA 特征和机器学习预测空气污染所致 COPD 急性加重

Prediction of COPD acute exacerbation in response to air pollution using exosomal circRNA profile and Machine learning.

机构信息

Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China.

Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87, Ding Jia Qiao Road, Nanjing 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

出版信息

Environ Int. 2022 Oct;168:107469. doi: 10.1016/j.envint.2022.107469. Epub 2022 Aug 20.

Abstract

Ambient fine particulate matter (PM) is linked to an increased risk of chronic obstructive pulmonary disease (COPD) exacerbations, which significantly increase the risk of mortality in COPD patients. Identifying the subtype of COPD patients who are sensitive to environmental aggressions is necessary. Using in vitro and in vivo PM exposure models, we demonstrate that exosomal hsa_circ_0005045 is upregulated by PM and binds to the protein cargo peroxiredoxin2, which functionally aggravates hallmarks of COPD by recruiting neutrophil elastase and triggering in situ release of tumor necrosis factor (TNF)-α by inflammatory cells. The biological function of hsa_circ_0005045 associated with aggravation of COPD is validated using exosome-transplantation and conditional circRNA-knockdown murine models. By sorting the major components of PM, we find that PM-bound heavy metals, which are distinguishable from the components of cigarette smoke, trigger the elevation of exosomal hsa_circ_0005045. Finally, using machine learning models in a cohort with 327 COPD patients, the PM exposure-sensitive COPD patients are characterized by relatively high hsa_circ_0005045 expression, non-smoking, and group C (mMRC 0-1 (or CAT < 10) and ≥ 2 exacerbations (or ≥ 1 exacerbation leading to hospital admission) in the past year). Thus, our results suggest that environmental reduction in PM emission provides a targeted approach to protecting non-smoking COPD patients against air pollution-related disease exacerbation.

摘要

环境细颗粒物 (PM) 与慢性阻塞性肺疾病 (COPD) 恶化的风险增加有关,这显著增加了 COPD 患者的死亡率。确定对环境侵害敏感的 COPD 患者亚型是必要的。我们使用体外和体内 PM 暴露模型表明,外泌体 hsa_circ_0005045 被 PM 上调,并与蛋白 cargo 过氧化物酶 2 结合,通过招募中性粒细胞弹性蛋白酶并触发炎症细胞原位释放肿瘤坏死因子 (TNF)-α,从而使 COPD 的特征功能恶化。使用外体移植和条件 circRNA 敲除鼠模型验证了与 COPD 恶化相关的 hsa_circ_0005045 的生物学功能。通过对 PM 的主要成分进行分类,我们发现 PM 结合的重金属,可与香烟烟雾的成分区分开来,引发外泌体 hsa_circ_0005045 的升高。最后,在 327 名 COPD 患者的队列中使用机器学习模型,PM 暴露敏感的 COPD 患者的特征是 hsa_circ_0005045 表达相对较高、不吸烟和 C 组 (mMRC 0-1(或 CAT < 10) 和过去一年中至少有 2 次恶化(或至少 1 次恶化导致住院))。因此,我们的结果表明,环境中 PM 排放的减少为保护不吸烟的 COPD 患者免受与空气污染相关的疾病恶化提供了一种有针对性的方法。

相似文献

引用本文的文献

8
Extracellular vesicles and COPD: foe or friend?细胞外囊泡与 COPD:敌是友?
J Nanobiotechnology. 2023 May 5;21(1):147. doi: 10.1186/s12951-023-01911-5.
9
Exosomal RNAs in the development and treatment of pituitary adenomas.外泌体 RNA 在垂体腺瘤发生发展及治疗中的作用
Front Endocrinol (Lausanne). 2023 Feb 17;14:1142494. doi: 10.3389/fendo.2023.1142494. eCollection 2023.

本文引用的文献

2
Machine Learning Model Validation for Early Stage Studies with Small Sample Sizes.机器学习模型在小样本量早期研究中的验证。
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2314-2319. doi: 10.1109/EMBC46164.2021.9629697.
5
The role of exosomes from BALF in lung disease.支气管肺泡灌洗液来源的外泌体在肺部疾病中的作用。
J Cell Physiol. 2022 Jan;237(1):161-168. doi: 10.1002/jcp.30553. Epub 2021 Aug 13.
6
The Potential Roles of Exosomes in Chronic Obstructive Pulmonary Disease.外泌体在慢性阻塞性肺疾病中的潜在作用
Front Med (Lausanne). 2021 Jan 14;7:618506. doi: 10.3389/fmed.2020.618506. eCollection 2020.
7
Protein Biomarkers for COPD Outcomes.慢性阻塞性肺疾病结局的蛋白生物标志物。
Chest. 2021 Jun;159(6):2244-2253. doi: 10.1016/j.chest.2021.01.004. Epub 2021 Jan 9.
10
Inflammatory effects of particulate matter air pollution.颗粒物空气污染的炎症效应。
Environ Sci Pollut Res Int. 2020 Dec;27(34):42390-42404. doi: 10.1007/s11356-020-10574-w. Epub 2020 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验