Suppr超能文献

通过单一电化学步骤形成钴锰层状双氢氧化物/石墨超级电容器

Formation of a CoMn-Layered Double Hydroxide/Graphite Supercapacitor by a Single Electrochemical Step.

作者信息

Roy Atanu, Schoetz Theresa, Gordon Leo W, Yen Hung-Ju, Hao Qingli, Mandler Daniel

机构信息

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

Department of Chemical Engineering, The City College of New York, CUNY, New York, NY 10031, USA.

出版信息

ChemSusChem. 2022 Nov 8;15(21):e202201418. doi: 10.1002/cssc.202201418. Epub 2022 Sep 21.

Abstract

Hybrid electric storage systems that combine capacitive and faradaic materials need to be well designed to benefit from the advantages of batteries and supercapacitors. The ultimate capacitive material is graphite (GR), yet high capacitance is usually not achieved due to restacking of its sheets. Therefore, an appealing approach to achieve high power and energy systems is to embed a faradaic 2D material in between the graphite sheets. Here, a simple one-step approach was developed, whereby a faradaic material [layered double hydroxide (LDH)] was electrochemically formed inside electrochemically exfoliated graphite. Specifically, GR was exfoliated under negative potentials by Co and, in the presence of Mn , formed GR-CoMn-LDH, which exhibited a high areal capacitance and energy density. The high areal capacitance was attributed to the exfoliation of the graphite at very negative potentials to form a 3D foam-like structure driven by hydrogen evolution as well as the deposition of CoMn-LDH due to hydroxide ion generation inside the GR sheets. The ratio between the Co and Mn in the CoMn-LDH was optimized and analyzed, and the electrochemical performance was studied. Analysis of a cross-section of the GR-CoMn-LDH confirmed the deposition of LDH inside the GR layers. The areal capacitance of the electrode was 186 mF cm at a scan rate of 2 mV s . Finally, an asymmetric supercapacitor was assembled with GR-CoMn-LDH and exfoliated graphite as the positive and negative electrodes, respectively, yielding an energy density of 96.1 μWh cm and a power density of 5 mW cm .

摘要

结合电容性和法拉第材料的混合电存储系统需要精心设计,以便从电池和超级电容器的优势中获益。终极电容性材料是石墨(GR),然而由于其片层的重新堆叠,通常无法实现高电容。因此,实现高功率和高能量系统的一种有吸引力的方法是在石墨片层之间嵌入一种法拉第二维材料。在此,开发了一种简单的一步法,通过该方法在电化学剥离的石墨内部电化学形成一种法拉第材料[层状双氢氧化物(LDH)]。具体而言,GR在负电位下被Co剥离,并在Mn存在的情况下形成GR-CoMn-LDH,其表现出高的面积电容和能量密度。高面积电容归因于在非常负的电位下石墨的剥离,以形成由析氢驱动的三维泡沫状结构,以及由于GR片层内部氢氧根离子的产生而导致的CoMn-LDH的沉积。对CoMn-LDH中Co和Mn的比例进行了优化和分析,并研究了其电化学性能。对GR-CoMn-LDH横截面的分析证实了LDH在GR层内部的沉积。电极在2 mV s的扫描速率下的面积电容为186 mF cm 。最后,分别以GR-CoMn-LDH和剥离的石墨作为正负极组装了一个非对称超级电容器,其能量密度为96.1 μWh cm ,功率密度为5 mW cm 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f5/9826322/e8c84124499e/CSSC-15-0-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验