Bernal-Chávez Sergio Alberto, Alcalá-Alcalá Sergio, Tapia-Guerrero Y S, Magaña Jonathan J, Del Prado-Audelo María Luisa, Leyva-Gómez Gerardo
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos Mexico
RSC Adv. 2022 Aug 5;12(34):21713-21724. doi: 10.1039/d2ra02295h. eCollection 2022 Aug 4.
The search for materials and process parameters capable of generating hydrogels for soft tissue engineering applications, based on an experimental design strategy that allows the evaluation of several factors involved in their development and performance, has greatly increased. Nevertheless, the fabrication technique can influence their mechanical properties, swelling, crystallinity, and even their susceptibility to contamination by microorganisms, compromising their performance within the tissue or organ. This study aimed to evaluate the influence of the freeze/thaw technique on different characteristics of polyvinyl alcohol-xanthan gum hydrogel. Methods: this research analyzed the critical variables of the freeze/thaw process through a systematic study of a 2 factorial design of experiments, such as the proportion and concentration of polymers, freezing time and temperature, and freeze/thaw cycles. Additionally, physicochemical analysis, susceptibility to bacterial growth, and cell viability tests were included to approximate its cytotoxicity. The optimized hydrogel consisted of polyvinyl alcohol and xanthan gum at a 95 : 5 ratio, polymer mixture concentration of 15%, and 12 h of freezing with three cycles of freeze/thaw. The hydrogel was crystalline, flexible, and resistant, with tensile strengths ranging from 9 to 87 kPa. The hydrogel was appropriate for developing scaffolds for soft tissue engineering such as the cardiac and skeletal muscle, dermis, thyroid, bladder, and spleen. Also, the hydrogel did not expose an cytotoxic effect, rendering it a candidate for biomedical applications.
基于一种实验设计策略来寻找能够生成用于软组织工程应用水凝胶的材料和工艺参数的研究显著增加,这种策略允许评估其开发和性能中涉及的几个因素。然而,制造技术会影响它们的机械性能、膨胀性、结晶度,甚至它们对微生物污染的敏感性,从而损害它们在组织或器官内的性能。本研究旨在评估冻融技术对聚乙烯醇 - 黄原胶水凝胶不同特性的影响。方法:本研究通过对2 析因实验设计的系统研究,分析了冻融过程的关键变量,如聚合物的比例和浓度、冷冻时间和温度以及冻融循环次数。此外,还进行了物理化学分析、细菌生长敏感性和细胞活力测试,以评估其细胞毒性。优化后的水凝胶由聚乙烯醇和黄原胶按95∶5的比例、聚合物混合物浓度为15%、冷冻12小时并进行三个冻融循环组成。该水凝胶具有结晶性、柔韧性和抗性,拉伸强度范围为9至87 kPa。该水凝胶适用于开发用于软组织工程的支架,如心脏和骨骼肌、真皮、甲状腺、膀胱和脾脏。此外,该水凝胶未表现出细胞毒性作用,使其成为生物医学应用的候选材料。