Shirley E L, Woicik J C
Sensor Science Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Phys Chem Chem Phys. 2022 Sep 14;24(35):20742-20759. doi: 10.1039/d2cp00912a.
Extended X-ray absorption fine structure (EXAFS) has evolved into an unprecedented local-structure technique that is routinely used to study materials' problems in the biological, chemical, and physical sciences. Like many other experimental techniques, EXAFS also requires that several key atomic parameters must be known before structural information can be quantitatively determined. Utilizing current analytical methods, we revisit the isoelectronic series CuBr, ZnSe, GaAs, and Ge originally studied by Stern during the early development of EXAFS [E. A. Stern , , 1980, , 5521; B. A. Bunker and E. A. Stern, 1983, , 1017]. We demonstrate that the EXAFS code FEFF accurately predicts the atomic phase shifts and backscattering amplitudes that are primarily functions of the sum of atomic numbers along an EXAFS scattering path. We also investigate quantitative fitting and first- and second-shell phase transferability together with problems that arise if a backscattering atom is identified incorrectly in an EXAFS fitting model. Features in the near-edge region, on the other hand, are shown to require a comprehensive treatment of the band structure and density-of-states, including effects of the screened Coulomb interaction between the photoelectron and core hole. We demonstrate that the Bethe-Salpeter equation (BSE) accurately captures the NEXAFS (or XANES) portion of the spectrum for the isoelectronic series in addition to Si and Ge-Si alloys, including within a few eV of the absorption edge, where band structure and excitonic effects are most important.
扩展X射线吸收精细结构(EXAFS)已发展成为一种前所未有的局部结构技术,常用于研究生物、化学和物理科学中的材料问题。与许多其他实验技术一样,EXAFS也要求在定量确定结构信息之前必须知道几个关键原子参数。利用当前的分析方法,我们重新审视了Stern在EXAFS早期发展阶段最初研究的等电子系列CuBr、ZnSe、GaAs和Ge [E. A. Stern, 1980, 5521; B. A. Bunker和E. A. Stern, 1983, 1017]。我们证明,EXAFS代码FEFF准确地预测了原子相移和背散射振幅,它们主要是沿EXAFS散射路径的原子序数之和的函数。我们还研究了定量拟合以及第一和第二壳层相的可转移性,以及在EXAFS拟合模型中错误识别背散射原子时出现的问题。另一方面,近边缘区域的特征表明需要对能带结构和态密度进行全面处理,包括光电子与芯孔之间屏蔽库仑相互作用的影响。我们证明,除了Si和Ge-Si合金外,Bethe-Salpeter方程(BSE)还能准确捕捉等电子系列光谱的NEXAFS(或XANES)部分,包括在吸收边缘的几个电子伏特范围内,在这个范围内能带结构和激子效应最为重要。