Suppr超能文献

样品制备对悬浮液中不同类型二氧化硅粒度分布的影响。

Effects of Sample Preparation on Particle Size Distributions of Different Types of Silica in Suspensions.

作者信息

Retamal Marín Rodrigo R, Babick Frank, Lindner Gottlieb-Georg, Wiemann Martin, Stintz Michael

机构信息

Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany.

Evonik Resource Efficiency GmbH, Brühler Straße 2, 50389 Wesseling, Germany.

出版信息

Nanomaterials (Basel). 2018 Jun 21;8(7):454. doi: 10.3390/nano8070454.

Abstract

The granulometric characterization of synthetic amorphous silica (SAS) nanomaterials (NMs) still demands harmonized standard operation procedures. SAS is produced as either precipitated, fumed (pyrogenic), gel and colloidal SAS and these qualities differ, among others, with respect to their state of aggregation and aggregate strength. The reproducible production of suspensions from SAS, e.g., for biological testing purposes, demands a reasonable amount of dispersing energy. Using materials representative for each of the types of SAS, we employed ultrasonic dispersing (USD) at energy densities of 8⁻1440 J/mL and measured resulting particle sizes by dynamic light scattering and laser diffraction. In this energy range, USD had no significant impact on particle size distributions of colloidal and gel SAS, but clearly decreased the particle size of precipitated and fumed SAS. For high energy densities, we observed a considerable contamination of SAS suspensions with metal particles caused by abrasion of the sonotrode’s tip. To avoid this problem, the energy density was limited to 270 J/mL and remaining coarse particles were removed with size-selective filtration. The ultrasonic dispersion of SAS at medium levels of energy density is suggested as a reasonable compromise to produce SAS suspensions for toxicological in vitro testing.

摘要

合成无定形二氧化硅(SAS)纳米材料(NMs)的粒度表征仍需要统一的标准操作程序。SAS有沉淀法、气相法(热解法)、凝胶法和胶体法等生产方式,这些产品在聚集状态和聚集体强度等方面存在差异。例如,为了生物测试目的,从SAS可重复生产悬浮液需要合理的分散能量。我们使用代表每种SAS类型的材料,在8⁻1440 J/mL的能量密度下采用超声分散(USD),并通过动态光散射和激光衍射测量所得的粒径。在此能量范围内,USD对胶体和凝胶SAS的粒径分布没有显著影响,但明显减小了沉淀法和气相法SAS的粒径。对于高能量密度,我们观察到由于超声探头尖端磨损导致SAS悬浮液被金属颗粒严重污染。为避免此问题,能量密度限制在270 J/mL,并通过尺寸选择性过滤去除剩余的粗颗粒。建议在中等能量密度水平下对SAS进行超声分散,作为生产用于毒理学体外测试的SAS悬浮液的合理折衷方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fd3/6070795/d87f18a43dc6/nanomaterials-08-00454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验