Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616.
Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2206708119. doi: 10.1073/pnas.2206708119. Epub 2022 Aug 31.
The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of (), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.
窦房结(SAN)作为主要起搏区域,产生电脉冲并在整个心脏传播。心力衰竭(HF)中已有充分的记录表明 SAN 功能障碍伴心动过缓。然而,其潜在机制尚不完全清楚。线粒体对于决定细胞生死的细胞过程至关重要。肌浆网(SR)上的兰尼碱受体 2(RyR2)释放 Ca 进入线粒体-SR 微域,作为关键的通讯机制,以匹配能量产生以满足代谢需求。因此,我们检验了这样一个假设,即在 SAN 功能障碍的 HF 中,线粒体-SR 连接组学的改变起作用。我们利用了一种通过横主动脉缩窄(TAC)诱导的慢性压力超负荷诱导 HF 的小鼠模型,以及一种 SAN 特异性的 CRISPR-Cas9 介导的基因敲低(),这是一种线粒体-SR 连接的 GTPase 蛋白。TAC 小鼠表现出心脏功能受损、心脏纤维化和严重的 SAN 功能障碍的 HF 表现。使用电子显微镜(EM)断层扫描的超微结构成像显示出异常的线粒体结构,线粒体-SR 距离增加。Mfn2 的表达显著下调,并在 HF SAN 细胞中与 RyR2 的共定位减少。实际上,SAN 特异性 基因敲低导致线粒体-SR 微域的改变和 SAN 功能障碍。最后,线粒体-SR 微域的破坏导致异常的线粒体 Ca 处理、局部蛋白激酶 A(PKA)活性改变和 HF SAN 细胞中线粒体功能受损。本研究深入了解了线粒体-SR 微域在 SAN 自动性中的作用以及 HF 患者 SAN 功能障碍的可能治疗靶点。