School of Computing, Newcastle University, Newcastle Upon Tyne NE4 5TG, United Kingdom.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain.
ACS Synth Biol. 2022 Sep 16;11(9):3058-3066. doi: 10.1021/acssynbio.2c00255. Epub 2022 Aug 31.
As genetic circuits become more sophisticated, the size and complexity of data about their designs increase. The data captured goes beyond genetic sequences alone; information about circuit modularity and functional details improves comprehension, performance analysis, and design automation techniques. However, new data types expose new challenges around the accessibility, visualization, and usability of design data (and metadata). Here, we present a method to transform circuit designs into networks and showcase its potential to enhance the utility of design data. Since networks are dynamic structures, initial graphs can be interactively shaped into subnetworks of relevant information based on requirements such as the hierarchy of biological parts or interactions between entities. A significant advantage of a network approach is the ability to scale abstraction, providing an automatic sliding level of detail that further tailors the visualization to a given situation. Additionally, several visual changes can be applied, such as coloring or clustering nodes based on types (e.g., genes or promoters), resulting in easier comprehension from a user perspective. This approach allows circuit designs to be coupled to other networks, such as metabolic pathways or implementation protocols captured in graph-like formats. We advocate using networks to structure, access, and improve synthetic biology information.
随着遗传电路变得越来越复杂,关于它们设计的数据的大小和复杂性也在增加。所捕获的数据不仅包括遗传序列;关于电路模块性和功能细节的信息可以提高对设计的理解、性能分析和设计自动化技术。然而,新的数据类型带来了新的挑战,包括设计数据(和元数据)的可访问性、可视化和可用性。在这里,我们提出了一种将电路设计转换为网络的方法,并展示了它增强设计数据实用性的潜力。由于网络是动态结构,因此可以根据生物部件的层次结构或实体之间的相互作用等要求,将初始图交互地塑造成相关信息的子网。网络方法的一个显著优势是能够扩展抽象级别,提供自动滑动细节级别,从而根据给定情况进一步调整可视化效果。此外,可以应用多种视觉变化,例如根据类型(例如,基因或启动子)对节点进行着色或聚类,从而从用户的角度更容易理解。这种方法允许将电路设计与其他网络(如代谢途径或以图形格式捕获的实现协议)耦合。我们提倡使用网络来组织、访问和改进合成生物学信息。