Suppr超能文献

域泛化视觉能力的神经关联。

The neural correlates of domain-general visual ability.

机构信息

Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States.

出版信息

Cereb Cortex. 2023 Apr 4;33(8):4280-4292. doi: 10.1093/cercor/bhac342.

Abstract

People vary in their general ability to compare, identify, and remember objects. Research using latent variable modeling identifies a domain-general visual recognition ability (called o) that reflects correlations among different visual tasks and categories. We measure associations between a psychometrically-sensitive measure of o and a neurometrically-sensitive measure of visual sensitivity to shape. We report evidence for distributed neural correlates of o using functional and anatomical regions-of-interest (ROIs) as well as whole brain analyses. Neural selectivity to shape is associated with o in several regions of the ventral pathway, as well as additional foci in parietal and premotor cortex. Multivariate analyses suggest the distributed effects in ventral cortex reflect a common mechanism. The network of brain areas where neural selectivity predicts o is similar to that evoked by the most informative features for object recognition in prior work, showing convergence of 2 different approaches on identifying areas that support the best object recognition performance. Because o predicts performance across many visual tasks for both novel and familiar objects, we propose that o could predict the magnitude of neural changes in task-relevant areas following experience with specific task and object category.

摘要

人们在比较、识别和记忆物体的一般能力上存在差异。使用潜在变量建模的研究确定了一种领域通用的视觉识别能力(称为 o),它反映了不同视觉任务和类别之间的相关性。我们测量了 o 的心理测量敏感度量与对形状的视觉敏感性的神经测量敏感度量之间的关联。我们使用功能和解剖学区域兴趣(ROI)以及全脑分析报告了 o 的分布式神经相关性的证据。形状的神经选择性与腹侧通路中的几个区域的 o 相关,以及顶叶和运动前皮质中的其他焦点相关。多元分析表明,腹侧皮层中的分布式效应反映了一种共同的机制。在先前的工作中,用于对象识别的最具信息量的特征可以诱发大脑区域的网络,该网络中的神经选择性预测 o,表明两种不同方法在确定支持最佳对象识别性能的区域方面的趋同。由于 o 可以预测许多视觉任务和新的和熟悉的物体的性能,我们提出 o 可以预测特定任务和对象类别经验后与任务相关区域的神经变化的幅度。

相似文献

1
The neural correlates of domain-general visual ability.域泛化视觉能力的神经关联。
Cereb Cortex. 2023 Apr 4;33(8):4280-4292. doi: 10.1093/cercor/bhac342.
7
Visual Object Recognition: Do We (Finally) Know More Now Than We Did?视觉物体识别:我们(终于)比以前知道得更多了吗?
Annu Rev Vis Sci. 2016 Oct 14;2:377-396. doi: 10.1146/annurev-vision-111815-114621. Epub 2016 Aug 3.
8
Relating Visual Production and Recognition of Objects in Human Visual Cortex.人类视觉皮层中物体的视觉产生与识别的关系。
J Neurosci. 2020 Feb 19;40(8):1710-1721. doi: 10.1523/JNEUROSCI.1843-19.2019. Epub 2019 Dec 23.

本文引用的文献

2
Match me if you can: Evidence for a domain-general visual comparison ability.与我匹配:通用视觉比较能力的证据。
Psychon Bull Rev. 2022 Jun;29(3):866-881. doi: 10.3758/s13423-021-02044-2. Epub 2022 Jan 7.
3
Novel and familiar object recognition rely on the same ability.识别新事物和熟悉事物的能力是相同的。
J Exp Psychol Gen. 2022 Mar;151(3):676-694. doi: 10.1037/xge0001100. Epub 2021 Sep 16.
5
Domain-specific and domain-general contributions to reading musical notation.阅读乐谱的领域特异性和领域一般性贡献。
Atten Percept Psychophys. 2021 Oct;83(7):2983-2994. doi: 10.3758/s13414-021-02349-3. Epub 2021 Aug 2.
9
Inferring latent learning factors in large-scale cognitive training data.从大规模认知训练数据中推断潜在学习因素。
Nat Hum Behav. 2020 Nov;4(11):1145-1155. doi: 10.1038/s41562-020-00935-3. Epub 2020 Aug 31.
10
General learning ability in perceptual learning.一般学习能力在知觉学习中的作用。
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19092-19100. doi: 10.1073/pnas.2002903117. Epub 2020 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验