Suppr超能文献

测量物体识别能力:可靠性、有效性和综合 z 分数方法。

Measuring object recognition ability: Reliability, validity, and the aggregate z-score approach.

机构信息

Department of Psychology, Vanderbilt University, Nashville, TN, USA.

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

出版信息

Behav Res Methods. 2024 Oct;56(7):6598-6612. doi: 10.3758/s13428-024-02372-w. Epub 2024 Mar 4.

Abstract

Measurement of domain-general object recognition ability (o) requires minimization of domain-specific variance. One approach is to model o as a latent variable explaining performance on a battery of tests which differ in task demands and stimuli; however, time and sample requirements may be prohibitive. Alternatively, an aggregate measure of o can be obtained by averaging z-scores across tests. Using data from Sunday et al., Journal of Experimental Psychology: General, 151, 676-694, (2022), we demonstrated that aggregate scores from just two such object recognition tests provide a good approximation (r = .79) of factor scores calculated from a model using a much larger set of tests. Some test combinations produced correlations of up to r = .87 with factor scores. We then revised these tests to reduce testing time, and developed an odd one out task, using a unique object category on nearly every trial, to increase task and stimuli diversity. To validate our measures, 163 participants completed the object recognition tests on two occasions, one month apart. Providing the first evidence that o is stable over time, our short aggregate o measure demonstrated good test-retest reliability (r = .77). The stability of o could not be completely accounted for by intelligence, perceptual speed, and early visual ability. Structural equation modeling suggested that our tests load significantly onto the same latent variable, and revealed that as a latent variable, o is highly stable (r = .93). Aggregation is an efficient method for estimating o, allowing investigation of individual differences in object recognition ability to be more accessible in future studies.

摘要

测量一般领域的物体识别能力(o)需要最小化特定领域的方差。一种方法是将 o 建模为一个潜在变量,解释在一组不同任务需求和刺激的测试中的表现;然而,时间和样本要求可能是禁止的。或者,可以通过在测试之间平均 z 分数来获得 o 的综合度量。使用 Sunday 等人的数据,《实验心理学杂志:一般》,151,676-694,(2022),我们证明了仅从两个这样的物体识别测试中获得的综合分数与使用更大的测试集的模型计算的因子分数非常接近(r=0.79)。一些测试组合与因子分数的相关性高达 r=0.87。然后,我们修改了这些测试以减少测试时间,并使用几乎每个试验中独特的物体类别开发了一个异常选择任务,以增加任务和刺激的多样性。为了验证我们的度量标准,163 名参与者在两次不同的场合完成了物体识别测试,相隔一个月。这首次提供了 o 随时间稳定的证据,我们的简短综合 o 度量表现出良好的测试-重测可靠性(r=0.77)。o 的稳定性不能完全由智力、感知速度和早期视觉能力来解释。结构方程模型表明,我们的测试显著加载到相同的潜在变量上,并揭示了作为一个潜在变量,o 非常稳定(r=0.93)。聚合是估计 o 的有效方法,允许在未来的研究中更方便地研究物体识别能力的个体差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验