School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China.
Small. 2022 Sep;18(39):e2203872. doi: 10.1002/smll.202203872. Epub 2022 Aug 31.
The development of multifunctional and robust swimming microrobots working at the free air-liquid interface has encountered challenge as new manipulation strategies are needed to overcome the complicated interfacial restrictions. Here, flexible but reliable mechanisms are shown that achieve a remote-control bubble microrobot with multiple working modes and high maneuverability by the assistance of a soft air-liquid interface. This bubble microrobot is developed from a hollow Janus microsphere (JM) regulated by a magnetic field, which can implement switchable working modes like pusher, gripper, anchor, and sweeper. The collapse of the microbubble and the accompanying directional jet flow play a key role for functioning in these working modes, which is analogous to a "bubble tentacle." Using a simple gamepad, the orientation and the navigation of the bubble microrobot can be easily manipulated. In particular, a speed modulation method is found for the bubble microrobot, which uses vertical magnetic field to control the orientation of the JM and the direction of the bubble-induced jet flow without changing the fuel concentration. The findings demonstrate a substantial advance of the bubble microrobot specifically working at the air-liquid interface and depict some nonintuitive mechanisms that can help develop more complicated microswimmers.
在自由气液界面工作的多功能、强大的游泳微型机器人的发展遇到了挑战,因为需要新的操纵策略来克服复杂的界面限制。在这里,展示了灵活但可靠的机制,通过软气液界面的辅助,实现了具有多种工作模式和高机动性的远程控制气泡微型机器人。这种气泡微型机器人是由磁场调节的中空 Janus 微球(JM)开发的,它可以实现推式、夹持式、锚固式和清扫式等可切换工作模式。微气泡的塌陷和伴随的定向射流对于这些工作模式的功能起着关键作用,这类似于“气泡触手”。使用简单的游戏手柄,可以轻松地操纵气泡微型机器人的方向和导航。特别是,发现了一种用于气泡微型机器人的速度调节方法,该方法使用垂直磁场来控制 JM 的方向和气泡诱导射流的方向,而无需改变燃料浓度。研究结果表明,气泡微型机器人在气液界面上的工作取得了重大进展,并描绘了一些有助于开发更复杂的微型游泳者的非直观机制。