Suppr超能文献

激活的 ClpP 肽酶强力抓住蛋白质底物。

The activated ClpP peptidase forcefully grips a protein substrate.

机构信息

Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee.

Department of Biochemistry, Vanderbilt University, Nashville, Tennessee.

出版信息

Biophys J. 2022 Oct 18;121(20):3907-3916. doi: 10.1016/j.bpj.2022.08.042. Epub 2022 Aug 31.

Abstract

ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ∼160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.

摘要

与多种细胞活动相关的 ATP 酶(AAA+)蛋白酶通过将 ATP 水解与机械蛋白展开、易位和最终降解偶联,维持蛋白质的动态平衡。尽管 ATP 酶活性驱动这些分子机器执行大部分机械功,但肽酶如何促进底物的强力变性和连续穿入仍然未知。在这里,我们使用单分子光学捕获技术,在没有伴侣 ATP 酶的情况下以及在激活的小分子酰基二肽存在的情况下,研究了来自大肠杆菌的酪蛋白水解肽酶 P(ClpP)的机械活性。我们证明 ClpP 在超过 40 pN 的机械负载下夹持蛋白质底物,这大于观察到的 AAA+展开酶 ClpX 和 AAA+蛋白酶复合物 ClpXP 和 ClpAP 的负载。我们进一步在不同负载下表征了底物-ClpP 键的寿命和断裂力。我们发现,所得的滑动键行为不依赖于 ClpP 肽酶活性。此外,我们发现,在没有负载的情况下,ClpP 与蛋白质底物之间的键寿命与展开时间(高达约 160 s)相关,对于难以展开的模型底物蛋白质而言。这些在负载下对底物-肽酶键的直接测量定义了 AAA+ 蛋白酶在机械展开和降解蛋白质底物时所需的关键特性。

相似文献

1
The activated ClpP peptidase forcefully grips a protein substrate.激活的 ClpP 肽酶强力抓住蛋白质底物。
Biophys J. 2022 Oct 18;121(20):3907-3916. doi: 10.1016/j.bpj.2022.08.042. Epub 2022 Aug 31.

本文引用的文献

1
Optical tweezers in single-molecule biophysics.单分子生物物理学中的光镊
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00021-6. Epub 2021 Mar 25.
2
Cutting, Amplifying, and Aligning Microtubules with Severing Enzymes.用切断酶切割、扩增和对齐微管。
Trends Cell Biol. 2021 Jan;31(1):50-61. doi: 10.1016/j.tcb.2020.10.004. Epub 2020 Nov 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验