Suppr超能文献

优化的深度神经网络及其在作物精播中的应用。

Optimized Deep Neural Network and Its Application in Fine Sowing of Crops.

机构信息

College of Modern Information Technology Henan Polytechnic, ZhengZhou 450018, China.

出版信息

Comput Intell Neurosci. 2022 Aug 21;2022:3650702. doi: 10.1155/2022/3650702. eCollection 2022.

Abstract

Winter wheat is one of the most important food products. Increasing food demand and limited land resources have forced the development of agricultural production to be more refined and efficient. The most important part of agricultural production is sowing. With the promotion of precision agriculture, precision seeding has become the main component of modern agricultural seeding technology system, and the adoption of precision seeding technology is an important means of large-scale production and cost saving and efficiency enhancement. However, the current sowing technology and sowing equipment cannot meet the requirements of wheat sowing accuracy. In this context, a differential perturbation particle swarm optimization (DPPSO) algorithm is proposed by embedding differential perturbation into particle swarm optimization, which shows fast convergence speed and good global performance. After that the DPPSO is used to optimize the convolutional neural network (CNN) to build an optimized CNN (DPPSO-CNN) model and applied to the field of crops fine sowing. Finally, the experimental results show that the proposed method not only has a faster convergence rate but also achieves better wheat seeding performance. The research of this paper an effectively improves the accuracy and uniformity of wheat seeding and lay a foundation for improving wheat yield per unit area and promotes the intelligent development of agriculture in the future.

摘要

冬小麦是最重要的粮食作物之一。不断增长的粮食需求和有限的土地资源迫使农业生产向更加精细化和高效化的方向发展。农业生产最重要的部分是播种。随着精准农业的推广,精量播种已成为现代农业播种技术体系的主要组成部分,采用精量播种技术是实现大规模生产、降低成本和提高效率的重要手段。然而,当前的播种技术和播种设备无法满足小麦播种精度的要求。在这种背景下,通过将差分扰动嵌入粒子群优化算法(Particle Swarm Optimization,PSO)中,提出了一种差分扰动粒子群优化算法(Differential Perturbation Particle Swarm Optimization,DPPSO),该算法具有较快的收敛速度和良好的全局性能。然后,使用 DPPSO 对卷积神经网络(Convolutional Neural Network,CNN)进行优化,构建了一个优化的 CNN(DPPSO-CNN)模型,并将其应用于作物精量播种领域。最后,实验结果表明,所提出的方法不仅具有更快的收敛速度,而且还能实现更好的小麦播种性能。本文的研究有效提高了小麦播种的精度和均匀性,为提高单位面积小麦产量奠定了基础,推动了未来农业的智能化发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac8/9420567/b5cfed1a4a9e/CIN2022-3650702.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验