Suppr超能文献

医学与医疗保健领域的人工智能“民主化”:探寻一个难以捉摸术语的应用情况

"Democratizing" artificial intelligence in medicine and healthcare: Mapping the uses of an elusive term.

作者信息

Rubeis Giovanni, Dubbala Keerthi, Metzler Ingrid

机构信息

Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.

出版信息

Front Genet. 2022 Aug 15;13:902542. doi: 10.3389/fgene.2022.902542. eCollection 2022.

Abstract

"Democratizing" artificial intelligence (AI) in medicine and healthcare is a vague term that encompasses various meanings, issues, and visions. This article maps the ways this term is used in discourses on AI in medicine and healthcare and uses this map for a normative reflection on how to direct AI in medicine and healthcare towards desirable futures. We searched peer-reviewed articles from Scopus, Google Scholar, and PubMed along with grey literature using search terms "democrat*", "artificial intelligence" and "machine learning". We approached both as documents and analyzed them qualitatively, asking: What is the object of democratization? What should be democratized, and why? Who is the demos who is said to benefit from democratization? And what kind of theories of democracy are (tacitly) tied to specific uses of the term? We identified four clusters of visions of democratizing AI in healthcare and medicine: 1) democratizing medicine and healthcare through AI, 2) multiplying the producers and users of AI, 3) enabling access to and oversight of data, and 4) making AI an object of democratic governance. The envisioned democratization in most visions mainly focuses on patients as consumers and relies on or limits itself to free market-solutions. Democratization in this context requires defining and envisioning a set of social goods, and deliberative processes and modes of participation to ensure that those affected by AI in healthcare have a say on its development and use.

摘要

在医学和医疗保健领域实现人工智能的“民主化”是一个模糊的术语,它包含了各种含义、问题和愿景。本文梳理了该术语在医学和医疗保健领域人工智能相关论述中的使用方式,并利用这一梳理结果对如何引导医学和医疗保健领域的人工智能走向理想未来进行规范性反思。我们使用搜索词“democrat*”“人工智能”和“机器学习”,在Scopus、谷歌学术和PubMed等数据库中搜索同行评议文章以及灰色文献。我们将这些文献视为研究对象并进行定性分析,提出以下问题:民主化的对象是什么?应该对什么进行民主化,为什么?据说能从民主化中受益的民众是谁?以及什么样的民主理论(隐含地)与该术语的特定用法相关联?我们确定了医疗保健和医学领域人工智能民主化愿景的四个类别:1)通过人工智能实现医学和医疗保健的民主化,2)增加人工智能的生产者和使用者,3)实现数据的获取和监督,4)使人工智能成为民主治理的对象。大多数愿景中所设想的民主化主要将患者视为消费者,依赖或局限于自由市场解决方案。在这种背景下,民主化需要定义和设想一系列社会福祉,以及审议过程和参与模式,以确保医疗保健领域受人工智能影响的人能够对其发展和使用发表意见。

相似文献

9
Ethics of Artificial Intelligence in Medicine and Ophthalmology.医学和眼科学中的人工智能伦理。
Asia Pac J Ophthalmol (Phila). 2021;10(3):289-298. doi: 10.1097/APO.0000000000000397.

引用本文的文献

1
Opinion: Mental health research: to augment or not to augment.观点:心理健康研究:是否进行增强研究
Front Psychiatry. 2025 Feb 18;16:1539157. doi: 10.3389/fpsyt.2025.1539157. eCollection 2025.
4
Harnessing artificial intelligence in radiology to augment population health.利用放射学中的人工智能增强人群健康。
Front Med Technol. 2023 Nov 8;5:1281500. doi: 10.3389/fmedt.2023.1281500. eCollection 2023.

本文引用的文献

1
Natural product drug discovery in the artificial intelligence era.人工智能时代的天然产物药物发现
Chem Sci. 2021 Dec 13;13(6):1526-1546. doi: 10.1039/d1sc04471k. eCollection 2022 Feb 9.
4
Opportunities and Challenges in Democratizing Immunology Datasets.免疫数据集民主化的机遇与挑战。
Front Immunol. 2021 Apr 16;12:647536. doi: 10.3389/fimmu.2021.647536. eCollection 2021.
7
Artificial Intelligence in Medicine: Today and Tomorrow.医学中的人工智能:现状与未来。
Front Med (Lausanne). 2020 Feb 5;7:27. doi: 10.3389/fmed.2020.00027. eCollection 2020.
10
Digital medicine, on its way to being just plain medicine.数字医学正在成为普通医学。
NPJ Digit Med. 2018 Jan 15;1:20175. doi: 10.1038/s41746-017-0005-1. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验