Suppr超能文献

谷歌街景图像作为患者健康结果的预测指标,2017 - 2019年

Google Street View Images as Predictors of Patient Health Outcomes, 2017-2019.

作者信息

Nguyen Quynh C, Belnap Tom, Dwivedi Pallavi, Deligani Amir Hossein Nazem, Kumar Abhinav, Li Dapeng, Whitaker Ross, Keralis Jessica, Mane Heran, Yue Xiaohe, Nguyen Thu T, Tasdizen Tolga, Brunisholz Kim D

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD 20742, USA.

Healthcare Delivery Institute, Intermountain Healthcare, Salt Lake City, UT 84107, USA.

出版信息

Big Data Cogn Comput. 2022 Mar;6(1). doi: 10.3390/bdcc6010015. Epub 2022 Jan 27.

Abstract

Collecting neighborhood data can both be time- and resource-intensive, especially across broad geographies. In this study, we leveraged 1.4 million publicly available Google Street View (GSV) images from Utah to construct indicators of the neighborhood built environment and evaluate their associations with 2017-2019 health outcomes of approximately one-third of the population living in Utah. The use of electronic medical records allows for the assessment of associations between neighborhood characteristics and individual-level health outcomes while controlling for predisposing factors, which distinguishes this study from previous GSV studies that were ecological in nature. Among 938,085 adult patients, we found that individuals living in communities in the highest tertiles of green streets and non-single-family homes have 10-27% lower diabetes, uncontrolled diabetes, hypertension, and obesity, but higher substance use disorders-controlling for age, White race, Hispanic ethnicity, religion, marital status, health insurance, and area deprivation index. Conversely, the presence of visible utility wires overhead was associated with 5-10% more diabetes, uncontrolled diabetes, hypertension, obesity, and substance use disorders. Our study found that non-single-family and green streets were related to a lower prevalence of chronic conditions, while visible utility wires and single-lane roads were connected with a higher burden of chronic conditions. These contextual characteristics can better help healthcare organizations understand the drivers of their patients' health by further considering patients' residential environments, which present both risks and resources.

摘要

收集邻里数据可能既耗时又耗费资源,尤其是在广阔的地域范围内。在本研究中,我们利用了来自犹他州的140万张公开可用的谷歌街景(GSV)图像来构建邻里建成环境指标,并评估它们与犹他州约三分之一人口2017 - 2019年健康结果之间的关联。电子病历的使用能够在控制 predisposing因素的同时评估邻里特征与个体层面健康结果之间的关联,这使本研究有别于以往本质上属于生态学研究的GSV研究。在938,085名成年患者中,我们发现生活在绿色街道和非独栋房屋比例最高三分位数社区的个体患糖尿病、未控制的糖尿病、高血压和肥胖症的几率低10 - 27%,但物质使用障碍的患病率更高——在控制了年龄、白人种族、西班牙裔、宗教、婚姻状况、医疗保险和地区贫困指数之后。相反,头顶可见的公用事业电线与糖尿病、未控制的糖尿病、高血压、肥胖症和物质使用障碍的患病率高出5 - 10%有关。我们的研究发现,非独栋房屋和绿色街道与慢性病患病率较低有关,而可见的公用事业电线和单车道道路与更高的慢性病负担有关。这些背景特征可以通过进一步考虑患者的居住环境,更好地帮助医疗保健组织了解其患者健康的驱动因素,居住环境既存在风险也有资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f14/9425729/9d52caf35b33/nihms-1797341-f0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验