Suppr超能文献

围绕胰岛素医嘱处理过程开发和验证住院患者低血糖模型。

Development and Validation of Inpatient Hypoglycemia Models Centered Around the Insulin Ordering Process.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

J Diabetes Sci Technol. 2024 Mar;18(2):423-429. doi: 10.1177/19322968221119788. Epub 2022 Sep 1.

Abstract

BACKGROUND

The insulin ordering process is an opportunity to provide clinicians with hypoglycemia risk predictions, but few hypoglycemia models centered around the insulin ordering process exist.

METHODS

We used data on adult patients, admitted in 2019 to non-ICU floors of a large teaching hospital, who had orders for subcutaneous insulin. Our outcome was hypoglycemia, defined as a blood glucose (BG) <70 mg/dL within 24 hours after ordering insulin. We trained and evaluated models to predict hypoglycemia at the time of placing an insulin order, using logistic regression, random forest, and extreme gradient boosting (XGBoost). We compared performance using area under the receiver operating characteristic curve (AUCs) and precision-recall curves. We determined recall at our goal precision of 0.30.

RESULTS

Of 21 052 included insulin orders, 1839 (9%) were followed by a hypoglycemic event within 24 hours. Logistic regression, random forest, and XGBoost models had AUCs of 0.81, 0.80, and 0.79, and recall of 0.44, 0.49, and 0.32, respectively. The most significant predictor was the lowest BG value in the 24 hours preceding the order. Predictors related to the insulin order being placed at the time of the prediction were useful to the model but less important than the patient's history of BG values over time.

CONCLUSIONS

Hypoglycemia within the next 24 hours can be predicted at the time an insulin order is placed, providing an opportunity to integrate decision support into the medication ordering process to make insulin therapy safer.

摘要

背景

胰岛素医嘱流程是为临床医生提供低血糖风险预测的机会,但围绕胰岛素医嘱流程的低血糖预测模型很少。

方法

我们使用了 2019 年在一家大型教学医院非 ICU 病房住院的成年患者的数据,这些患者有皮下胰岛素医嘱。我们的结局是低血糖,定义为胰岛素医嘱后 24 小时内血糖(BG)<70mg/dL。我们使用逻辑回归、随机森林和极端梯度提升(XGBoost)训练和评估了在下达胰岛素医嘱时预测低血糖的模型。我们通过接受者操作特征曲线下面积(AUCs)和精度-召回曲线比较了性能。我们在目标精度为 0.30 时确定了召回率。

结果

在 21052 例纳入的胰岛素医嘱中,1839 例(9%)在 24 小时内发生低血糖事件。逻辑回归、随机森林和 XGBoost 模型的 AUC 分别为 0.81、0.80 和 0.79,召回率分别为 0.44、0.49 和 0.32。最显著的预测指标是医嘱前 24 小时内的最低 BG 值。与预测时下达胰岛素医嘱相关的预测指标对模型有用,但不如患者随时间推移的 BG 值历史重要。

结论

可以在下达胰岛素医嘱时预测接下来 24 小时内的低血糖,为将决策支持整合到药物医嘱流程中以提高胰岛素治疗安全性提供了机会。

相似文献

2
Reliability of Inpatient CGM: Comparison to Standard of Care.住院患者连续血糖监测的可靠性:与常规护理的比较。
J Diabetes Sci Technol. 2023 Mar;17(2):329-335. doi: 10.1177/19322968211062168. Epub 2021 Dec 15.

本文引用的文献

1
Machine Learning Models for Inpatient Glucose Prediction.机器学习模型在住院患者血糖预测中的应用。
Curr Diab Rep. 2022 Aug;22(8):353-364. doi: 10.1007/s11892-022-01477-w. Epub 2022 Jun 27.
6
Using machine learning to predict severe hypoglycaemia in hospital.利用机器学习预测医院内严重低血糖症。
Diabetes Obes Metab. 2021 Oct;23(10):2311-2319. doi: 10.1111/dom.14472. Epub 2021 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验