Suppr超能文献

预测住院糖尿病患者的低血糖:一项推导和验证研究。

Predicting hypoglycemia in hospitalized patients with diabetes: A derivation and validation study.

机构信息

Department of Medicine E, Beilinson Hospital, Rabin Medical Center, Petah-Tiqva, Israel.

Department of Medicine D, Rambam Health Care Campus, Haifa, Israel.

出版信息

Diabetes Res Clin Pract. 2021 Jan;171:108611. doi: 10.1016/j.diabres.2020.108611. Epub 2020 Dec 5.

Abstract

AIMS

Develop and validate a model for predicting hypoglycemia in inpatients.

METHODS

Derivation cohort: patients treated with hypoglycemic drugs and admitted to the departments of medicine of a university hospital during 2016.

VALIDATION

patients admitted to a community hospital, and patients admitted to a university hospital in the north of Israel, 2017-2018. Data available in the electronic patient record (EPR) during the first hours of hospital stay were used to develop a logistic model to predict the probability of hypoglycemia. The performance of the model was measured in the validation cohorts.

RESULTS

In the derivation cohort, hypoglycemia was measured in 474 out of 3605 patients, 13.1%. The logistic model to predict hypoglycemia included age, nasogastric or percutaneous gastrostomy tube, Charlson score, vomiting, chest pain, acute renal failure, insulin, hemoglobin and diastolic blood pressure. The area under the ROC curve (AUROC) was 0.71 (95% CI 0.69-0.73). In the highest probability group the percentage of hypoglycemia was 24.3% (258/1061). In the two validation groups hypoglycemia was measured in 269/2592 patients (11.1%); and 393/3635 (10.8%). AUROC was 0.72 (95% CI 0.68-0.76); and 0.71 (95% CI 0.68-0.74). In the highest probability groups hypoglycemia was measured in 28.1% (111/395); and 23.0% (211/909) of patients.

CONCLUSIONS

The derived model performed well in the validation cohorts. Assuming that most of the hypoglycemia episodes could be prevented we would need to invest efforts to avoid hypoglycemia in 4-5 patients to prevent one episode of hypoglycemia.

摘要

目的

开发并验证一种预测住院患者低血糖的模型。

方法

推导队列:2016 年在大学医院内科接受低血糖药物治疗的患者。

验证

2017-2018 年在社区医院和以色列北部一所大学医院住院的患者。在住院的最初几小时内,使用电子病历(EPR)中可用的数据来开发预测低血糖概率的逻辑模型。在验证队列中测量模型的性能。

结果

在推导队列中,3605 名患者中有 474 名(13.1%)发生了低血糖。预测低血糖的逻辑模型包括年龄、鼻胃管或经皮胃造口管、Charlson 评分、呕吐、胸痛、急性肾衰竭、胰岛素、血红蛋白和舒张压。ROC 曲线下面积(AUROC)为 0.71(95%CI 0.69-0.73)。在最高概率组中,低血糖的发生率为 24.3%(258/1061)。在两个验证组中,2592 名患者中有 269 名(11.1%)发生低血糖;3635 名患者中有 393 名(10.8%)。AUROC 为 0.72(95%CI 0.68-0.76);和 0.71(95%CI 0.68-0.74)。在最高概率组中,395 名患者中有 28.1%(111/395)发生低血糖;909 名患者中有 23.0%(211/909)发生低血糖。

结论

所提出的模型在验证队列中表现良好。假设大多数低血糖发作都可以预防,我们需要努力避免 4-5 名患者发生低血糖,以预防一次低血糖发作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验