Loidl Verena, Koller Daniela, Mansmann Ulrich, Manz Kirsi Marjaana
Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians-Universität München, München, Germany.
LMU München, Pettenkofer School of Public Health, München, Germany.
Gesundheitswesen. 2022 Dec;84(12):1136-1144. doi: 10.1055/a-1830-6796. Epub 2022 Sep 1.
Since the beginning of the COVID-19 pandemic, thematic maps showing the spread of the disease have been of great public interest. From the perspective of risk communication, those maps can be problematic, since random variation or extreme values may occur and cover up the actual regional patterns. One potential solution is applying spatial smoothing methods. The aim of this study was to show changes in incidence ratios over time in Bavarian districts using spatially smoothed maps.
Data on SARS-CoV-2 were provided by the Bavarian Health and Food Safety Authority on 29.10.2021 and 17.02.2022. The demographic data per district are derived from the Statistical Report of the Bavarian State Office for Statistics for 2019. Four age groups per sex (<18, 18-29, 30-64,>64 years) divided into 16 time periods (01/28/2020 to 12/31/2021) were included. Maps show standardized incidence ratios (SIR) spatially smoothed by Bayesian hierarchical modelling.
The SIR varied remarkably between districts. Variations occurred for each time period, showing changing regional patterns over time.
Smoothed health maps are suitable for showing trends in incidence ratios over time for COVID-19 in Bavaria and offer the advantage over traditional maps in giving more realistic estimates by including neighborhood relationships. The methodological approach can be seen as a first step to explain the regional heterogeneity in the pandemic, and to support improved risk communication.
自新冠疫情开始以来,展示疾病传播情况的专题地图一直备受公众关注。从风险沟通的角度来看,这些地图可能存在问题,因为可能会出现随机变化或极端值,从而掩盖实际的区域模式。一种潜在的解决方案是应用空间平滑方法。本研究的目的是使用空间平滑地图展示巴伐利亚州各地区发病率随时间的变化。
2021年10月29日和2022年2月17日,巴伐利亚州卫生与食品安全局提供了关于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的数据。每个地区的人口数据来自巴伐利亚州统计局2019年的统计报告。纳入了按性别划分的四个年龄组(<18岁、18 - 29岁、30 - 64岁、>64岁),并分为16个时间段(2020年1月28日至2021年12月31日)。地图展示了通过贝叶斯层次模型进行空间平滑的标准化发病率(SIR)。
各地区的标准化发病率差异显著。每个时间段都有变化,显示出区域模式随时间的变化。
平滑后的健康地图适用于展示巴伐利亚州新冠疫情发病率随时间的趋势,并且通过纳入邻里关系提供更现实的估计,这一点优于传统地图。该方法可被视为解释疫情中区域异质性并支持改善风险沟通的第一步。