Google Research, Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA.
Nat Commun. 2022 Sep 1;13(1):5145. doi: 10.1038/s41467-022-32483-x.
Existing weather forecasting models are based on physics and use supercomputers to evolve the atmosphere into the future. Better physics-based forecasts require improved atmospheric models, which can be difficult to discover and develop, or increasing the resolution underlying the simulation, which can be computationally prohibitive. An emerging class of weather models based on neural networks overcome these limitations by learning the required transformations from data instead of relying on hand-coded physics and by running efficiently in parallel. Here we present a neural network capable of predicting precipitation at a high resolution up to 12 h ahead. The model predicts raw precipitation targets and outperforms for up to 12 h of lead time state-of-the-art physics-based models currently operating in the Continental United States. The results represent a substantial step towards validating the new class of neural weather models.
现有的天气预报模型基于物理学,使用超级计算机将大气演变到未来。更好的基于物理的预测需要改进的大气模型,这可能很难发现和开发,或者提高模拟的分辨率,这可能在计算上是禁止的。一类新兴的基于神经网络的天气模型通过从数据中学习所需的转换来克服这些限制,而不是依赖于手工编写的物理,并且能够高效地并行运行。在这里,我们提出了一个能够以高达 12 小时的提前时间预测高分辨率降水的神经网络。该模型预测原始降水目标,在 12 小时的提前时间内,表现优于目前在美国大陆运行的基于物理的最先进模型。这些结果代表了朝着验证新的神经网络天气模型迈出的重要一步。