Waqas Muhammad, Humphries Usa Wannasingha, Hlaing Phyo Thandar, Wangwongchai Angkool, Dechpichai Porntip
The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand.
Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
MethodsX. 2024 May 31;12:102757. doi: 10.1016/j.mex.2024.102757. eCollection 2024 Jun.
Climate change and increasing water demands underscore the importance of water resource management. Precise precipitation forecasting is critical to effective management. This study introduced a Daily Precipitation Forecasting Hybrid (DPFH) technique for central Thailand, which uses three different input-based models to improve prediction accuracy. •The proposed methods precisely combine the biorthogonal wavelet transformation (BWT) function through BWT-RBFNN (Radial Basis Function Neural Networks) and (BWT-LSTM-RNN)Long Short-Term Memory Recurrent Neural Networks. Comparative analyses reveal that hybrid models perform better than conventional deep LSTM-RNN and Multilayer Perceptron Artificial Neural Networks (MLP-ANN). Although MLP-ANN showed moderate effectiveness, LSTM-RNN displayed notable enhancements, particularly evidenced by an impressive R (0.96) in Model M-2.•The combination of BWT-LSTM-RNN yielded substantial enhancements, constantly surpassing standalone models. Specifically, DPFH-3 exhibited superior performance across multiple observation stations.•The findings emphasize the efficiency of the BWT-LSTM-RNN models in capturing varied precipitation patterns, highlighting their potential to significantly improve the accuracy of precipitation forecasts, particularly in the context of water resource management in central Thailand.
气候变化和不断增长的用水需求凸显了水资源管理的重要性。精确的降水预测对于有效管理至关重要。本研究为泰国中部引入了一种日降水预测混合(DPFH)技术,该技术使用三种不同的基于输入的模型来提高预测准确性。•所提出的方法通过BWT-RBFNN(径向基函数神经网络)和(BWT-LSTM-RNN)长短期记忆循环神经网络精确地结合了双正交小波变换(BWT)函数。对比分析表明,混合模型的表现优于传统的深度LSTM-RNN和多层感知器人工神经网络(MLP-ANN)。虽然MLP-ANN显示出一定的有效性,但LSTM-RNN有显著提升,尤其是在模型M-2中表现出令人印象深刻的R(0.96)。•BWT-LSTM-RNN的组合产生了大幅提升,持续超越独立模型。具体而言,DPFH-3在多个观测站表现出卓越性能。•研究结果强调了BWT-LSTM-RNN模型在捕捉不同降水模式方面的效率,突出了它们在显著提高降水预测准确性方面的潜力,特别是在泰国中部水资源管理的背景下。