Suppr超能文献

基于信息论的表面肌电无监督逐层特征提取算法

Unsupervised layer-wise feature extraction algorithm for surface electromyography based on information theory.

作者信息

Li Mingqiang, Liu Ziwen, Tang Siqi, Ge Jianjun, Zhang Feng

机构信息

Information Science Academy, China Electronics Technology Group Corporation, Beijing, China.

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Neurosci. 2022 Aug 16;16:975131. doi: 10.3389/fnins.2022.975131. eCollection 2022.

Abstract

Feature extraction is a key task in the processing of surface electromyography (SEMG) signals. Currently, most of the approaches tend to extract features with deep learning methods, and show great performance. And with the development of deep learning, in which supervised learning is limited by the excessive expense incurred due to the reliance on labels. Therefore, unsupervised methods are gaining more and more attention. In this study, to better understand the different attribute information in the signal data, we propose an information-based method to learn disentangled feature representation of SEMG signals in an unsupervised manner, named Layer-wise Feature Extraction Algorithm (LFEA). Furthermore, due to the difference in the level of attribute abstraction, we specifically designed the layer-wise network structure. In TC score and MIG metric, our method shows the best performance in disentanglement, which is 6.2 lower and 0.11 higher than the second place, respectively. And LFEA also get at least 5.8% accuracy lead than other models in classifying motions. All experiments demonstrate the effectiveness of LEFA.

摘要

特征提取是表面肌电信号(SEMG)处理中的一项关键任务。目前,大多数方法倾向于使用深度学习方法提取特征,并表现出良好的性能。随着深度学习的发展,其中监督学习受到因依赖标签而产生的过高成本的限制。因此,无监督方法越来越受到关注。在本研究中,为了更好地理解信号数据中的不同属性信息,我们提出了一种基于信息的方法,以无监督方式学习SEMG信号的解缠特征表示,称为逐层特征提取算法(LFEA)。此外,由于属性抽象水平的差异,我们专门设计了逐层网络结构。在TC分数和MIG指标中,我们的方法在解缠方面表现出最佳性能,分别比第二名低6.2和高0.11。并且LFEA在运动分类方面也比其他模型至少领先5.8%的准确率。所有实验都证明了LEFA的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验