Suppr超能文献

加拿大荷斯坦奶牛甲烷排放效率基因组评估的发展

Development of genomic evaluation for methane efficiency in Canadian Holsteins.

作者信息

Rojas de Oliveira Hinayah, Sweett Hannah, Narayana Saranya, Fleming Allison, Shadpour Saeed, Malchiodi Francesca, Jamrozik Janusz, Kistemaker Gerrit, Sullivan Peter, Schenkel Flavio, Hailemariam Dagnachew, Stothard Paul, Plastow Graham, Van Doormaal Brian, Lohuis Michael, Shannon Jay, Baes Christine, Miglior Filippo

机构信息

Lactanet Canada, Guelph, ON, N1K 1E5, Canada.

Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.

出版信息

JDS Commun. 2024 Feb 1;5(6):756-760. doi: 10.3168/jdsc.2023-0431. eCollection 2024 Nov.

Abstract

Reducing methane (CH) emissions from agriculture, among other sectors, is a key step to reducing global warming. There are many strategies to reduce CH emissions in ruminant animals, including genetic selection, which yields cumulative and permanent genetic gains over generations. A single-step genomic evaluation for methane efficiency (MEF) was officially implemented in April 2023 for the Canadian Holstein breed, aiming to reduce CH emissions without affecting production levels. This evaluation was achieved by using milk mid-infrared (MIR) spectral data to predict individual cow CH production. The genetic evaluation model included milk MIR predicted CH (CH4), along with milk yield (MY), fat yield (FY), and protein yield (PY), as correlated traits. Traits were expressed in kilograms per day (MY, FY, and PY) or grams per day (CH4). The MiX99 software was used to fit the single-step, 4-trait animal model. Genomic breeding values for CH4 were then obtained by re-parameterization, using recursive genetic linear regression coefficients on MY, FY, and PY, giving a measure of MEF that is genetically independent of the production traits. The estimated breeding values were expressed as relative breeding values with a mean of 100 and standard deviation of 5 for the genetic base population, where a higher value indicates the animal produces lower predicted CH. This national genomic evaluation is another tool that will lower the dairy industry's carbon footprint by reducing CH emissions without affecting production traits.

摘要

减少农业等部门的甲烷(CH)排放是减缓全球变暖的关键一步。减少反刍动物CH排放有许多策略,包括基因选择,这种方法能在几代人之间产生累积且永久的遗传增益。2023年4月,加拿大荷斯坦奶牛品种正式实施了甲烷效率(MEF)的单步基因组评估,旨在在不影响生产水平的情况下减少CH排放。该评估通过使用牛奶中红外(MIR)光谱数据来预测个体奶牛的CH产量来实现。遗传评估模型包括牛奶MIR预测的CH(CH4),以及牛奶产量(MY)、脂肪产量(FY)和蛋白质产量(PY)作为相关性状。性状以每天千克数(MY、FY和PY)或每天克数(CH4)表示。使用MiX99软件拟合单步四性状动物模型。然后通过重新参数化获得CH4的基因组育种值,使用对MY、FY和PY的递归遗传线性回归系数,得出一个在遗传上独立于生产性状的MEF度量。估计育种值表示为相对育种值,遗传基础群体的均值为100,标准差为5,其中较高的值表明该动物预测产生的CH较低。这种全国性的基因组评估是另一种工具,它将通过在不影响生产性状的情况下减少CH排放来降低乳制品行业的碳足迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcb/11624370/15ae4010dcd3/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验