Suppr超能文献

海洋磷的可利用性与地球上生命的化学起源。

Marine phosphate availability and the chemical origins of life on Earth.

机构信息

Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK.

Department of Geological Sciences, University of Cape Town, Cape Town, 7700, South Africa.

出版信息

Nat Commun. 2022 Sep 2;13(1):5162. doi: 10.1038/s41467-022-32815-x.

Abstract

Prebiotic systems chemistry suggests that high phosphate concentrations were necessary to synthesise molecular building blocks and sustain primitive cellular systems. However, current understanding of mineral solubility predicts negligible phosphate concentrations for most natural waters, yet the role of Fe, ubiquitous on early Earth, is poorly quantified. Here we determine the solubility of Fe(II)-phosphate in synthetic seawater as a function of pH and ionic strength, integrate these observations into a thermodynamic model that predicts phosphate concentrations across a range of aquatic conditions, and validate these predictions against modern anoxic sediment pore waters. Experiments and models show that Fe significantly increases the solubility of all phosphate minerals in anoxic systems, suggesting that Hadean and Archean seawater featured phosphate concentrations ~10-10 times higher than currently estimated. This suggests that seawater readily met the phosphorus requirements of emergent cellular systems and early microbial life, perhaps fueling primary production during the advent of oxygenic photosynthesis.

摘要

前生物系统化学表明,高磷酸盐浓度对于合成分子构建块和维持原始细胞系统是必要的。然而,目前对矿物质溶解度的理解预测大多数天然水中的磷酸盐浓度可以忽略不计,而铁(在早期地球上普遍存在)的作用却没有得到很好的量化。在这里,我们确定了在合成海水中 Fe(II)-磷酸盐在 pH 值和离子强度的函数溶解度,将这些观察结果整合到一个热力学模型中,该模型可以预测各种水相条件下的磷酸盐浓度,并通过现代缺氧沉积物孔隙水来验证这些预测。实验和模型表明,Fe 在缺氧系统中显著增加了所有磷酸盐矿物的溶解度,这表明冥古宙和太古宙海水中的磷酸盐浓度比目前估计的要高~10-10 倍。这表明海水很容易满足新兴细胞系统和早期微生物生命的磷需求,也许为好氧光合作用出现时的初级生产提供了燃料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c332/9440033/d29e15c721b0/41467_2022_32815_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验