School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa.
Department of Computer Science, Federal University of Lafia, Lafia, Nigeria.
PLoS One. 2022 Nov 2;17(11):e0275346. doi: 10.1371/journal.pone.0275346. eCollection 2022.
This paper proposes an improvement to the dwarf mongoose optimization (DMO) algorithm called the advanced dwarf mongoose optimization (ADMO) algorithm. The improvement goal is to solve the low convergence rate limitation of the DMO. This situation arises when the initial solutions are close to the optimal global solution; the subsequent value of the alpha must be small for the DMO to converge towards a better solution. The proposed improvement incorporates other social behavior of the dwarf mongoose, namely, the predation and mound protection and the reproductive and group splitting behavior to enhance the exploration and exploitation ability of the DMO. The ADMO also modifies the lifestyle of the alpha and subordinate group and the foraging and seminomadic behavior of the DMO. The proposed ADMO was used to solve the congress on evolutionary computation (CEC) 2011 and 2017 benchmark functions, consisting of 30 classical and hybrid composite problems and 22 real-world optimization problems. The performance of the ADMO, using different performance metrics and statistical analysis, is compared with the DMO and seven other existing algorithms. In most cases, the results show that solutions achieved by the ADMO are better than the solution obtained by the existing algorithms.
本文提出了一种对矮脚蜣螂优化算法(DMO)的改进,称为高级矮脚蜣螂优化算法(ADMO)。改进的目标是解决 DMO 收敛速度慢的局限性。当初始解接近最优全局解时,就会出现这种情况;为了使 DMO 收敛到更好的解,后续的 alpha 值必须较小。所提出的改进结合了矮脚蜣螂的其他社会行为,即捕食和保护蚁冢以及生殖和群体分裂行为,以增强 DMO 的探索和开发能力。ADMO 还修改了 alpha 和从属群体的生活方式以及 DMO 的觅食和半游牧行为。所提出的 ADMO 用于解决进化计算大会(CEC)2011 年和 2017 年的基准函数,包括 30 个经典和混合复合问题以及 22 个实际优化问题。使用不同的性能指标和统计分析对 ADMO 的性能进行了比较,并与 DMO 和其他七种现有算法进行了比较。在大多数情况下,结果表明 ADMO 获得的解决方案优于现有算法获得的解决方案。