Suppr超能文献

在氮饥饿条件下,三种籼稻(Oryza sativa L. ssp. indica)基因型的氮同化相关基因表达水平、生理响应和形态适应。

Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions.

机构信息

National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.

Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.

出版信息

Protoplasma. 2023 May;260(3):691-705. doi: 10.1007/s00709-022-01806-6. Epub 2022 Sep 2.

Abstract

Nitrogen (N) is an essential nutrient available to the plants in form of nitrate and ammonium. It is a macronutrient important for the plant growth and development, especially in cereal crops, which consume it for the production of amino acids, proteins/enzymes, nucleic acids, cell wall complexes, plant hormones, and vitamins. In rice production, 17 kg N uptake is required to produce 1 ton of rice. Considering this, many techniques have been developed to evaluate leaf greenness or SPAD value for assessing the amount of N application in the rice cultivar to maximize the grain yield. The aim of the present study was to investigate the morpho-physiological characteristics and relative expression level of N assimilation in three different rice genotypes (MT2, RD31, KDML105) under 1.00 × (full N), 0.50 × , 0.25 × (N depletion), and 0.00 × (N deficiency) at seedling stage and the morpho-physiological traits and the grain yield attributes under 1.00 × (full N) and 0.25 × (N depletion) were compared. Leaf chlorosis and growth inhibition in rice seedlings under N deficiency were evidently observed. Shoot height, number of leaves, shoot fresh weight, shoot dry weight, and root fresh weight in KDML105 under N deficiency were decreased by 27.65%, 42.11%, 65.44%, 47.90%, and 54.09% over the control (full N). Likewise, leaf greenness was lowest in KDML105 under N deficiency (78.57% reduction over the full N), leading to low photosynthetic abilities. In addition, expression of nitrogen assimilation-related genes, OsNR1, OsGln1;1, and OsGln2, in KDML105 under N depletion were increased within 3 h and then declined after the long incubation period, whereas those were unchanged in cvs. MT2 and RD31. Similarly, relative expression level of OsNADH-GOGAT, OsFd-GOGAT, and OsAspAt1 in KDML105 was peaked when subjected to 0.50 × N for 6 h and then declined after the long incubation period. Moreover, overall growth characters and physiological changes in cv. RD31 at vegetative stage under 0.25 × N were retained better than those in cvs. KDML105 and MT2, resulting in high yield at the harvesting process. In summary, N assimilated-related genes in rice seedlings under N depletion were rapidly regulated within 3-6 h, especially cv. KDML105 and MT2, then downregulated, resulting in physiological changes, growth inhibition, and yield reduction.

摘要

氮(N)是植物可利用的形式为硝酸盐和铵盐的必需营养素。它是一种对植物生长和发育很重要的大量营养素,特别是在谷类作物中,它们消耗 N 来生产氨基酸、蛋白质/酶、核酸、细胞壁复合物、植物激素和维生素。在水稻生产中,生产 1 吨水稻需要吸收 17 公斤 N。有鉴于此,人们开发了许多技术来评估叶片绿色度或 SPAD 值,以评估水稻品种中 N 施用量,从而最大限度地提高谷物产量。本研究旨在研究三种不同水稻基因型(MT2、RD31、KDML105)在幼苗期处于 1.00×(全 N)、0.50×(N 耗尽)、0.25×(N 缺乏)和 0.00×(N 缺乏)时的氮同化的形态生理特征和相对表达水平,以及在 1.00×(全 N)和 0.25×(N 耗尽)下的形态生理特征和粒产量性状进行比较。在 N 缺乏下,水稻幼苗的叶片黄化和生长抑制明显。在 N 缺乏下,KDML105 的株高、叶片数、地上部鲜重、地上部干重和根鲜重分别比对照(全 N)减少了 27.65%、42.11%、65.44%、47.90%和 54.09%。同样,在 N 缺乏下,KDML105 的叶片绿色度最低(比全 N 减少 78.57%),导致光合作用能力降低。此外,KDML105 中与氮同化相关的基因 OsNR1、OsGln1;1 和 OsGln2 的表达在 3 小时内增加,然后在长时间孵育后下降,而 MT2 和 RD31 中的基因表达则不变。同样,在 KDML105 中,当用 0.50×N 处理 6 小时时,OsNADH-GOGAT、OsFd-GOGAT 和 OsAspAt1 的相对表达水平达到峰值,然后在长时间孵育后下降。此外,在 0.25×N 下,RD31 在营养生长阶段的整体生长特征和生理变化保持得比 KDML105 和 MT2 更好,导致收获过程中的高产量。总之,N 缺乏下水稻幼苗中与氮同化相关的基因在 3-6 小时内迅速调控,特别是 KDML105 和 MT2,然后下调,导致生理变化、生长抑制和产量降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验