Suppr超能文献

暴露组学研究的最新方法:来自暴露组数据挑战事件的结果。

State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event.

机构信息

ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.

ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Lyon, France.

出版信息

Environ Int. 2022 Oct;168:107422. doi: 10.1016/j.envint.2022.107422. Epub 2022 Aug 27.

Abstract

The exposome recognizes that individuals are exposed simultaneously to a multitude of different environmental factors and takes a holistic approach to the discovery of etiological factors for disease. However, challenges arise when trying to quantify the health effects of complex exposure mixtures. Analytical challenges include dealing with high dimensionality, studying the combined effects of these exposures and their interactions, integrating causal pathways, and integrating high-throughput omics layers. To tackle these challenges, the Barcelona Institute for Global Health (ISGlobal) held a data challenge event open to researchers from all over the world and from all expertises. Analysts had a chance to compete and apply state-of-the-art methods on a common partially simulated exposome dataset (based on real case data from the HELIX project) with multiple correlated exposure variables (P > 100 exposure variables) arising from general and personal environments at different time points, biological molecular data (multi-omics: DNA methylation, gene expression, proteins, metabolomics) and multiple clinical phenotypes in 1301 mother-child pairs. Most of the methods presented included feature selection or feature reduction to deal with the high dimensionality of the exposome dataset. Several approaches explicitly searched for combined effects of exposures and/or their interactions using linear index models or response surface methods, including Bayesian methods. Other methods dealt with the multi-omics dataset in mediation analyses using multiple-step approaches. Here we discuss features of the statistical models used and provide the data and codes used, so that analysts have examples of implementation and can learn how to use these methods. Overall, the exposome data challenge presented a unique opportunity for researchers from different disciplines to create and share state-of-the-art analytical methods, setting a new standard for open science in the exposome and environmental health field.

摘要

暴露组学认识到个体同时受到多种不同环境因素的影响,并采用整体方法来发现疾病的病因因素。然而,在尝试量化复杂暴露混合物对健康的影响时,会出现挑战。分析挑战包括处理高维性、研究这些暴露的综合效应及其相互作用、整合因果途径以及整合高通量组学层。为了应对这些挑战,巴塞罗那全球健康研究所(ISGlobal)举办了一场数据挑战赛,向来自世界各地和各个专业领域的研究人员开放。分析人员有机会在一个共同的部分模拟暴露组数据集(基于 HELIX 项目的真实案例数据)上竞争和应用最先进的方法,该数据集具有多个相关暴露变量(P>100 个暴露变量),这些变量来自一般和个人环境在不同时间点、生物分子数据(多组学:DNA 甲基化、基因表达、蛋白质、代谢组学)和 1301 对母婴的多个临床表型。提出的大多数方法包括特征选择或特征减少,以处理暴露组数据集的高维性。几种方法使用线性指数模型或响应面方法(包括贝叶斯方法)明确搜索暴露和/或其相互作用的综合效应。其他方法在中介分析中使用多步方法处理多组学数据集。在这里,我们讨论所使用的统计模型的特征,并提供所使用的数据和代码,以便分析人员有实现的示例,并可以学习如何使用这些方法。总体而言,暴露组学数据挑战赛为来自不同学科的研究人员提供了一个独特的机会,以创建和共享最先进的分析方法,为暴露组学和环境健康领域的开放科学设定了新的标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验