Suppr超能文献

颅内脑膜瘤的容积测量:线性、平面和基于多参数体素形态计量学方法的机器学习方法的比较。

Volumetric measurement of intracranial meningiomas: a comparison between linear, planimetric, and machine learning with multiparametric voxel-based morphometry methods.

机构信息

Division of Neurosurgery, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.

Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

J Neurooncol. 2023 Jan;161(2):235-243. doi: 10.1007/s11060-022-04127-z. Epub 2022 Sep 5.

Abstract

PURPOSE

To compare the accuracy of three volumetric methods in the radiological assessment of meningiomas: linear (ABC/2), planimetric, and multiparametric machine learning-based semiautomated voxel-based morphometry (VBM), and to investigate the relevance of tumor shape in volumetric error.

METHODS

Retrospective imaging database analysis at the authors' institutions. We included patients with a confirmed diagnosis of meningioma and preoperative cranial magnetic resonance imaging eligible for volumetric analyses. After tumor segmentation, images underwent automated computation of shape properties such as sphericity, roundness, flatness, and elongation.

RESULTS

Sixty-nine patients (85 tumors) were included. Tumor volumes were significantly different using linear (13.82 cm [range 0.13-163.74 cm]), planimetric (11.66 cm [range 0.17-196.2 cm]) and VBM methods (10.24 cm [range 0.17-190.32 cm]) (p < 0.001). Median volume and percentage errors between the planimetric and linear methods and the VBM method were 1.08 cm and 11.61%, and 0.23 cm and 5.5%, respectively. Planimetry and linear methods overestimated the actual volume in 79% and 63% of the patients, respectively. Correlation studies showed excellent reliability and volumetric agreement between manual- and computer-based methods. Larger and flatter tumors had greater accuracy on planimetry, whereas less rounded tumors contributed negatively to the accuracy of the linear method.

CONCLUSION

Semiautomated VBM volumetry for meningiomas is not influenced by tumor shape properties, whereas planimetry and linear methods tend to overestimate tumor volume. Furthermore, it is necessary to consider tumor roundness prior to linear measurement so as to choose the most appropriate method for each patient on an individual basis.

摘要

目的

比较三种容积测量方法在脑膜瘤放射学评估中的准确性:线性(ABC/2)、平面和基于多参数机器学习的半自动体素形态计量学(VBM),并探讨肿瘤形状在容积测量误差中的相关性。

方法

作者机构的回顾性影像学数据库分析。我们纳入了经证实患有脑膜瘤且术前颅磁共振成像适合容积分析的患者。肿瘤分割后,图像进行了自动计算形状属性,如球形度、圆形度、扁平度和伸长率。

结果

共纳入 69 例患者(85 个肿瘤)。线性(13.82cm[范围 0.13-163.74cm])、平面(11.66cm[范围 0.17-196.2cm])和 VBM 方法(10.24cm[范围 0.17-190.32cm])测量的肿瘤体积差异有统计学意义(p<0.001)。平面法和线性法与 VBM 法之间的体积中位数和百分比误差分别为 1.08cm 和 11.61%,0.23cm 和 5.5%。平面法和线性法分别在 79%和 63%的患者中高估了实际体积。相关性研究表明,手动和计算机两种方法之间具有极好的可靠性和容积一致性。较大且较平坦的肿瘤在平面测量中具有更高的准确性,而较不圆的肿瘤对线性方法的准确性产生负面影响。

结论

脑膜瘤半自动 VBM 容积测量不受肿瘤形状属性的影响,而平面和线性方法往往会高估肿瘤体积。此外,在进行线性测量之前有必要考虑肿瘤的圆度,以便根据每个患者的具体情况选择最合适的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验