Chen Huqiang, Chen Manjiao, Hu Xinjun, Mao Zhe, Liu Yongchao, Chen Xiangping, Cai Huizhuo, Bai Yongxiao
Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China.
School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):41348-41360. doi: 10.1021/acsami.2c10926. Epub 2022 Sep 4.
All-printed flexible micro-supercapacitors (MSCs) based on two-dimensional (2D) nanomaterials with in-plane interdigital configurations are regarded as promising miniaturized power source units, but they chronically suffer from self-aggregation and inadequate matching of electrode materials, thus resulting in inefficient electrolyte ions intercalation. Herein, an innovative multicomponent interlaced architecture essentially consisting of 2-amino-8-naphthol 6-sulfonic acid (ANS)-anchored pristine graphene and highly conductive multiwalled carbon nanotubes is reported. The assembled and optimized Gr@ANS electrodes offer sufficient absorption/desorption and redox-active sites, delivering a high areal capacitance of 33.7 mF/cm for screen-printed MSCs. Particularly, the well-modified Gr@ANS/CNTs-interlaced complex structure effectively prevents the usual restacking of the delaminated Gr@ANS nanosheets and maximizes ion accessibility in electrodes. Ascribed to the optimized electron-transferring kinetics, the achieved Gr@ANS/CNTs MSCs exhibit excellent capacitance (40.2 mF/cm and 18.8 F/cm), simultaneously significantly increasing the rate capability of Gr@ANS MSCs (from 3.9 to 60.0%). Arising from the multicomponent synergism, the all-solid-state MSCs exhibit outstanding bending stability and cycling performance (73.8% after 10 000 charge/discharge cycles). The new charge reservoir engineering evidenced in graphene-based micro-supercapacitors would serve as a stepping stone toward the scalable manufacture of hybrid energy storage micro-devices.
基于具有平面叉指结构的二维(2D)纳米材料的全印刷柔性微型超级电容器(MSC)被视为有前景的小型化电源单元,但它们长期受到自聚集和电极材料匹配不当的困扰,从而导致电解质离子插层效率低下。在此,报道了一种创新的多组分交错结构,其主要由2-氨基-8-萘酚6-磺酸(ANS)锚定的原始石墨烯和高导电性多壁碳纳米管组成。组装并优化后的Gr@ANS电极提供了足够的吸附/解吸和氧化还原活性位点,为丝网印刷的MSC提供了33.7 mF/cm²的高面积电容。特别地,经过良好修饰的Gr@ANS/CNTs交错复合结构有效地防止了分层的Gr@ANS纳米片通常的重新堆叠,并使电极中的离子可及性最大化。由于优化了电子转移动力学,所制备的Gr@ANS/CNTs MSC表现出优异的电容(40.2 mF/cm²和18.8 F/cm³),同时显著提高了Gr@ANS MSC的倍率性能(从3.9%提高到60.0%)。由于多组分协同作用,全固态MSC表现出出色的弯曲稳定性和循环性能(10000次充放电循环后为73.8%)。基于石墨烯的微型超级电容器中所证明的新型电荷存储库工程将成为迈向混合储能微型器件可扩展制造的垫脚石。