Suppr超能文献

高度纳米多孔泡沫镍作为三维全固态微型超级电容器中的集流体。

Highly Nanoporous Nickel Foam as Current Collectors in 3D All-Solid-State Microsupercapacitors.

作者信息

Wardhana Bayu Satriya, Wang Kuan-Wen, Hung Wei-Hsuan, Tsao I-Yu, Chen Pin-Ching, Jang Jason Shian-Ching, Hsu Shih-Chieh, Lee Sheng-Wei

机构信息

Institute of Materials Science and Engineering, National Central University, Taoyuan City 32001, Taiwan, ROC.

Department of Mechanical Engineering, Brawijaya University, Malang City 65145, Indonesia.

出版信息

ACS Omega. 2024 Aug 20;9(35):37355-37364. doi: 10.1021/acsomega.4c05514. eCollection 2024 Sep 3.

Abstract

This study reports a streamlined method for producing a highly nanoporous current collector with a substantial specific surface area, serving as an electrode for microsupercapacitors (MSCs). Initially, commercial Ni foams are patterned into an interdigitated structure by laser cutting. Subsequently, the Ni foams are infused with NiO nanopowders through dip coating, sintering, and reduction in an H atmosphere, followed by the growth of MnO through a redox reaction. The incorporation of NiO within this three-dimensional Ni current collector results in notable porosity within the range of approximately 200-600 nm. Such a 3D, highly nanoporous electrode dramatically increases the specific surface area by 30 times and substantially boosts the amount of active material deposition, surpassing those of commercially available Ni foams. Performance evaluations of this highly nanoporous electrode in a 1 M KOH solution demonstrate an areal capacity of 19.3 F/cm, retaining more than 95% capacitance at 5 mA/cm, and exhibiting an energy density of 671 μW h/cm, 25 times greater than commercial Ni foams. Moreover, in the realm of solid-state applications for MSCs, the remarkably high porous electrode achieves a commendable areal capacity of 7.22 F/cm and an energy density of 263.9 μW h/cm, rendering it exceptionally suitable for use in MSC applications.

摘要

本研究报告了一种简化方法,用于制备具有大比表面积的高度纳米多孔集流体,用作微型超级电容器(MSC)的电极。首先,通过激光切割将商用泡沫镍制成叉指状结构。随后,通过浸涂、烧结以及在氢气气氛中还原,使泡沫镍中注入氧化镍纳米粉末,接着通过氧化还原反应生长二氧化锰。在这种三维镍集流体中引入氧化镍会导致在约200 - 600纳米范围内产生显著的孔隙率。这样一个三维的、高度纳米多孔的电极将比表面积显著增加了30倍,并大幅提高了活性材料的沉积量,超过了市售泡沫镍。在1 M氢氧化钾溶液中对这种高度纳米多孔电极的性能评估表明,其面积容量为19.3 F/cm²,在5 mA/cm²时电容保持率超过95%,能量密度为671 μW h/cm²,比市售泡沫镍高25倍。此外,在MSC的固态应用领域,这种具有极高孔隙率的电极实现了7.22 F/cm²的可观面积容量和263.9 μW h/cm²的能量密度,使其非常适合用于MSC应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a98/11375808/ae135e666a7d/ao4c05514_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验