Suppr超能文献

基于膜脂生物合成相关基因的乳腺癌预后特征及治疗价值

Prognostic Signature and Therapeutic Value Based on Membrane Lipid Biosynthesis-Related Genes in Breast Cancer.

作者信息

Xu Yingkun, Jin Yudi, Gao Shun, Wang Yuan, Qu Chi, Wu Yinan, Ding Nan, Dai Yuran, Jiang Linshan, Liu Shengchun

机构信息

Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.

Department of Pathology, Chongqing University Cancer Hospital, Chongqing 400045, China.

出版信息

J Oncol. 2022 Aug 25;2022:7204415. doi: 10.1155/2022/7204415. eCollection 2022.

Abstract

There is a need to improve diagnostic and therapeutic approaches to enhance the prognosis of breast cancer, the most common malignancy worldwide. Membrane lipid biosynthesis is a hot biological pathway in current cancer research. It is unclear whether membrane lipid biosynthesis is involved in the prognosis of BRCA. With LASSO regression, a 14-gene prediction model was constructed using data from the TCGA-BRCA cohort. The prediction model includes GPAA1, PIGF, ST3GAL1, ST6GALNAC4, PLPP2, ELOVL1, HACD1, SGPP1, PRKD2, VAPB, CERS2, SGMS2, ALDH3B2, and HACD3. BRCA patients from the TCGA-BRCA cohort were divided into two risk subgroups based on the model. Kaplan-Meier survival curves showed that patients with lower risk scores had significantly improved overall survival (=2.49 - 09). In addition, risk score, age, stage, and TNM classification were used to predict mortality in BRCA patients. In addition, the 14 genes in the risk model were analyzed for gene variation, methylation level, drug sensitivity, and immune cell infiltration, and the miRNA-mRNA network was constructed. Afterward, the THPA website then analyzed the protein expression of 14 of these risk model genes in normal and pathological BRCA tissues. In conclusion, the membrane lipid biosynthesis-related risk model and nomogram can be used to predict BRCA clinical prognosis.

摘要

有必要改进诊断和治疗方法以提高乳腺癌(全球最常见的恶性肿瘤)的预后。膜脂生物合成是当前癌症研究中的一个热门生物学途径。尚不清楚膜脂生物合成是否与乳腺癌(BRCA)的预后有关。通过LASSO回归,使用来自TCGA - BRCA队列的数据构建了一个14基因预测模型。该预测模型包括GPAA1、PIGF、ST3GAL1、ST6GALNAC4、PLPP2、ELOVL1、HACD1、SGPP1、PRKD2、VAPB、CERS2、SGMS2、ALDH3B2和HACD3。基于该模型,将来自TCGA - BRCA队列的BRCA患者分为两个风险亚组。Kaplan - Meier生存曲线显示,风险评分较低的患者总生存期显著改善(=2.49 - 09)。此外,风险评分、年龄、分期和TNM分类被用于预测BRCA患者的死亡率。此外,对风险模型中的14个基因进行了基因变异、甲基化水平、药物敏感性和免疫细胞浸润分析,并构建了miRNA - mRNA网络。随后,通过THPA网站分析了这些风险模型基因中的14个在正常和病理BRCA组织中的蛋白质表达。总之,膜脂生物合成相关风险模型和列线图可用于预测BRCA的临床预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0198/9436593/e827547e44b8/JO2022-7204415.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验