Suppr超能文献

构建和验证血管生成相关的预后风险特征以促进乳腺癌患者的生存预测和生物标志物挖掘

Construction and Validation of Angiogenesis-Related Prognostic Risk Signature to Facilitate Survival Prediction and Biomarker Excavation of Breast Cancer Patients.

作者信息

Xu Yingkun, Peng Yang, Shen Meiying, Liu Li, Lei Jinwei, Gao Shun, Wang Yuan, Lan Ailin, Li Han, Liu Shengchun

机构信息

Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.

出版信息

J Oncol. 2022 Apr 20;2022:1525245. doi: 10.1155/2022/1525245. eCollection 2022.

Abstract

This study is aimed at exploring the potential mechanism of angiogenesis, a biological process-related gene in breast cancer (BRCA), and constructing a risk model related to the prognosis of BRCA patients. We used multiple bioinformatics databases and multiple bioinformatics analysis methods to complete our exploration in this research. First, we use the RNA-seq transcriptome data in the TCGA database to conduct a preliminary screening of angiogenesis-related genes through univariate Cox curve analysis and then use LASSO regression curve analysis for secondary screening. We successfully established a risk model consisting of seven angiogenesis-related genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully divide BRCA patients into the high-risk and low-risk groups with significant prognostic differences based on this risk model. In addition, we used angiogenesis-related genes to perform cluster analysis in BRCA patients and successfully divided BRCA patients into three clusters with significant prognostic differences, namely, cluster 1, cluster 2, and cluster 3. Subsequently, we combined the clinical-pathological data for correlation analysis, and there is a significant correlation between the risk model and the patient's T and stage. Multivariate Cox regression curve analysis showed that the age of BRCA patients and the risk score of the risk model could be used as independent risk factors in the progression of BRCA. In particular, based on this angiogenesis-related risk model, we have drawn a matching nomogram that can predict the 5-, 7-, and 10-year overall survival rates of BRCA patients. Subsequently, we performed a series of pan-cancer analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to explore drug sensitivity. Subsequently, to gain insight into the protein expression of these risk model genes in BRCA, we used the immunohistochemical data in the THPA database for verification. The results showed that the protein expressions of IL18, RUNX1, SCG2, and THY1 molecules in BRCA tissues were significantly higher than those in normal breast tissues, while the protein expressions of PF4 and TNFSF12 molecules in BRCA tissues were significantly lower than those in normal breast tissues. Finally, we conducted multiple GSEA analyses to explore the biological pathways these risk model genes can cross in cancer progression. In summary, we believe that this study can provide valuable data and clues for future studies on angiogenesis in BRCA.

摘要

本研究旨在探索血管生成这一与生物学过程相关的基因在乳腺癌(BRCA)中的潜在机制,并构建与BRCA患者预后相关的风险模型。在本研究中,我们使用了多个生物信息学数据库和多种生物信息学分析方法来完成我们的探索。首先,我们利用TCGA数据库中的RNA-seq转录组数据,通过单变量Cox曲线分析对血管生成相关基因进行初步筛选,然后使用LASSO回归曲线分析进行二次筛选。我们成功建立了一个由BRCA中7个血管生成相关基因组成的风险模型。ROC曲线分析结果表明,该风险模型具有良好的预测准确性。基于此风险模型,我们能够成功地将BRCA患者分为预后差异显著的高风险组和低风险组。此外,我们利用血管生成相关基因对BRCA患者进行聚类分析,并成功地将BRCA患者分为三个预后差异显著的聚类,即聚类1、聚类2和聚类3。随后,我们结合临床病理数据进行相关性分析,风险模型与患者的T分期和阶段之间存在显著相关性。多变量Cox回归曲线分析表明,BRCA患者的年龄和风险模型的风险评分可作为BRCA进展中的独立危险因素。特别是,基于这个与血管生成相关的风险模型,我们绘制了一个匹配的列线图,它可以预测BRCA患者的5年、7年和10年总生存率。随后,我们对该风险模型基因进行了一系列关于CNV、SNV、OS、甲基化和免疫浸润的泛癌分析,并利用GDSC数据探索药物敏感性。随后,为了深入了解这些风险模型基因在BRCA中的蛋白表达情况,我们使用THPA数据库中的免疫组化数据进行验证。结果表明,BRCA组织中IL18、RUNX1、SCG2和THY1分子的蛋白表达显著高于正常乳腺组织,而BRCA组织中PF4和TNFSF12分子的蛋白表达显著低于正常乳腺组织。最后,我们进行了多次GSEA分析,以探索这些风险模型基因在癌症进展中可能涉及的生物学途径。总之,我们认为本研究可以为未来BRCA血管生成研究提供有价值的数据和线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f9d/9045999/6d49554c8bb8/JO2022-1525245.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验