Suppr超能文献

基于深度学习算法的人脸图像的年龄和性别预测。

Prediction of the Age and Gender Based on Human Face Images Based on Deep Learning Algorithm.

机构信息

Department of Information Technology, Mepco Schlenk Engineering College, Sivakasi, 626005 Tamil Nadu, India.

Department of Electrical and Electronics Engineering, PSR Engineering College, Sivakasi, 626140 Tamil Nadu, India.

出版信息

Comput Math Methods Med. 2022 Aug 24;2022:1413597. doi: 10.1155/2022/1413597. eCollection 2022.

Abstract

In recent times, nutrition recommendation system has gained increasing attention due to their need for healthy living. Current studies on the food domain deal with a recommendation system that focuses on independent users and their health problems but lack nutritional advice to individual users. The proposed system is developed to suggest nutritional food to people based on age and gender predicted from their face image. The designed methodology preprocesses the input image before performing feature extraction using the deep convolution neural network (DCNN) strategy. This network extracts -dimensional characteristics from the source face image, followed by the feature selection strategy. The face's distinctive and identifiable traits are chosen utilizing a hybrid particle swarm optimization (HPSO) technique. Support vector machine (SVM) is used to classify a person's age and gender. The nutrition recommendation system relies on the age and gender classes. The proposed system is evaluated using classification rate, precision, and recall using Adience dataset and UTKface dataset, and real-world images exhibit excellent performance by achieving good prediction results and computation time.

摘要

近年来,由于人们对健康生活的需求,营养推荐系统越来越受到关注。当前的食品领域研究涉及到一个推荐系统,该系统侧重于独立用户及其健康问题,但缺乏针对个体用户的营养建议。拟议的系统旨在根据从人脸图像预测的年龄和性别,向人们推荐营养食品。所设计的方法在使用深度卷积神经网络(DCNN)策略进行特征提取之前,对输入图像进行预处理。该网络从源人脸图像中提取-维特征,然后进行特征选择策略。使用混合粒子群优化(HPSO)技术选择人脸的独特和可识别特征。支持向量机(SVM)用于对人的年龄和性别进行分类。营养推荐系统依赖于年龄和性别类别。使用 Adience 数据集和 UTKface 数据集,使用分类率、精度和召回率对所提出的系统进行评估,并且通过获得良好的预测结果和计算时间,真实世界的图像表现出出色的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d581/9433232/eaed663be910/CMMM2022-1413597.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验