Suppr超能文献

利用工程改造的蓝细菌从一氧化碳中可持续生产柠檬酸。

Sustainable citric acid production from CO in an engineered cyanobacterium.

作者信息

Zhang Lifang, Bryan Samantha J, Selão Tiago Toscano

机构信息

Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom.

出版信息

Front Microbiol. 2022 Aug 17;13:973244. doi: 10.3389/fmicb.2022.973244. eCollection 2022.

Abstract

Citric acid is one of the most widely used organic acids in the world, with applications ranging from acidity regulation in food and beverages to metal chelation in hydrometallurgical processes. Most of its production is currently derived from fermentative processes, using plant-derived carbon feedstocks. While these are currently dominant, there is an increasing need to develop closed-loop production systems that reduce process carbon footprint. In this work, we demonstrate for the first time that an engineered marine cyanobacterium sp. PCC 7002 can be used as a sustainable chassis for the photosynthetic conversion of CO to citric acid. Decreased citric acid cycle flux, through the use of a theophylline-responsive riboswitch, was combined with improved flux through citrate synthase and enhanced citric acid excretion, resulting in a significant improvement to citric acid production. While allowing citrate production, this strategy induces a growth defect which can be overcome by glutamate supplementation or by fine-tuning aconitase levels, resulting in an increase in production relative to WT of over 100-fold. This work represents a first step toward sustainable production of a commodity organic acid from CO.

摘要

柠檬酸是世界上使用最广泛的有机酸之一,其应用范围从食品和饮料的酸度调节到湿法冶金过程中的金属螯合。目前其大部分生产来自发酵过程,使用植物源碳原料。虽然这些目前占主导地位,但越来越需要开发减少工艺碳足迹的闭环生产系统。在这项工作中,我们首次证明了工程化的海洋蓝藻菌株PCC 7002可以用作将CO光合转化为柠檬酸的可持续底盘。通过使用茶碱响应性核糖开关降低柠檬酸循环通量,与通过柠檬酸合酶提高通量和增强柠檬酸排泄相结合,从而显著提高了柠檬酸产量。虽然允许柠檬酸盐产生,但这种策略会导致生长缺陷,这可以通过补充谷氨酸或微调乌头酸酶水平来克服,从而使产量相对于野生型提高100倍以上。这项工作代表了从CO可持续生产商品有机酸的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c0/9428468/884712de3e47/fmicb-13-973244-g001.jpg

相似文献

1
Sustainable citric acid production from CO in an engineered cyanobacterium.
Front Microbiol. 2022 Aug 17;13:973244. doi: 10.3389/fmicb.2022.973244. eCollection 2022.
3
Photosynthetic CO Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria.
J Agric Food Chem. 2017 Feb 15;65(6):1087-1092. doi: 10.1021/acs.jafc.7b00002. Epub 2017 Feb 2.
5
Direct Conversion of CO to α-Farnesene Using Metabolically Engineered Synechococcus elongatus PCC 7942.
J Agric Food Chem. 2017 Dec 6;65(48):10424-10428. doi: 10.1021/acs.jafc.7b03625. Epub 2017 Nov 10.
7
Photosynthetic Conversion of CO Into Pinene Using Engineered sp. PCC 7002.
Front Bioeng Biotechnol. 2021 Dec 17;9:779437. doi: 10.3389/fbioe.2021.779437. eCollection 2021.
8
Toward solar biodiesel production from CO2 using engineered cyanobacteria.
FEMS Microbiol Lett. 2017 May 1;364(9). doi: 10.1093/femsle/fnx066.
9
Systems analysis of ethanol production in the genetically engineered cyanobacterium sp. PCC 7002.
Biotechnol Biofuels. 2017 Mar 6;10:56. doi: 10.1186/s13068-017-0741-0. eCollection 2017.

引用本文的文献

1
Advancements in metabolic engineering: unlocking the potential of key organic acids for sustainable industrial applications.
Front Bioeng Biotechnol. 2025 Mar 11;13:1556516. doi: 10.3389/fbioe.2025.1556516. eCollection 2025.
3
Carbon Dioxide as a Sustainable Reagent in Circular Hydrometallurgy.
ChemSusChem. 2025 Feb 1;18(3):e202400931. doi: 10.1002/cssc.202400931. Epub 2024 Nov 7.

本文引用的文献

1
Cycling between growth and production phases increases cyanobacteria bioproduction of lactate.
Metab Eng. 2021 Nov;68:131-141. doi: 10.1016/j.ymben.2021.09.010. Epub 2021 Oct 1.
4
A Logic NAND Gate for Controlling Gene Expression in a Circadian Rhythm in Cyanobacteria.
ACS Synth Biol. 2020 Dec 18;9(12):3210-3216. doi: 10.1021/acssynbio.0c00455. Epub 2020 Dec 2.
8
Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources.
Metab Eng. 2019 Jul;54:255-263. doi: 10.1016/j.ymben.2019.04.013. Epub 2019 May 4.
9
Citrate synthase from Synechocystis is a distinct class of bacterial citrate synthase.
Sci Rep. 2019 Apr 15;9(1):6038. doi: 10.1038/s41598-019-42659-z.
10
Adopting a Theophylline-Responsive Riboswitch for Flexible Regulation and Understanding of Glycogen Metabolism in PCC7942.
Front Microbiol. 2019 Mar 21;10:551. doi: 10.3389/fmicb.2019.00551. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验