Suppr超能文献

前向可达集:动态网络连通分量的解析推导性质

Forward reachable sets: Analytically derived properties of connected components for dynamic networks.

作者信息

Armbruster Benjamin, Wang L I, Morris Martina

机构信息

Northwestern University, Industrial Engineering and Management Sciences, Evanston, IL, USA.

Statistics, University of Washington, Seattle, WA, USA.

出版信息

Netw Sci (Camb Univ Press). 2017 Sep;5(3):328-354. doi: 10.1017/nws.2017.10. Epub 2017 Jun 29.

Abstract

Formal analysis of the emergent structural properties of dynamic networks is largely uncharted territory. We focus here on the properties of forward reachable sets (FRS) as a function of the underlying degree distribution and edge duration. FRS are defined as the set of nodes that can be reached from an initial seed via a path of temporally ordered edges; a natural extension of connected component measures to dynamic networks. Working in a stochastic framework, we derive closed-form expressions for the mean and variance of the exponential growth rate of the FRS for temporal networks with both edge and node dynamics. For networks with node dynamics, we calculate thresholds for the growth of the FRS. The effects of finite population size are explored via simulation and approximation. We examine how these properties vary by edge duration and different cross-sectional degree distributions that characterize a range of scientifically interesting normative outcomes (Poisson and Bernoulli). The size of the forward reachable set gives an upper bound for the epidemic size in disease transmission network models, relating this work to epidemic modeling (Ferguson, 2000; Eames, 2004).

摘要

对动态网络新兴结构特性的形式化分析在很大程度上仍是未知领域。我们在此关注前向可达集(FRS)的特性,它是潜在度分布和边持续时间的函数。FRS被定义为可以通过按时间顺序排列的边的路径从初始种子节点到达的节点集;这是将连通分量度量自然扩展到动态网络。在一个随机框架中,我们推导出了具有边和节点动态的时间网络中FRS指数增长率的均值和方差的闭式表达式。对于具有节点动态的网络,我们计算了FRS增长的阈值。通过模拟和近似探讨了有限种群规模的影响。我们研究了这些特性如何因边持续时间以及表征一系列具有科学意义的规范结果(泊松和伯努利)的不同横截面度分布而变化。前向可达集的大小为疾病传播网络模型中的流行规模提供了一个上限,将这项工作与流行病建模联系起来(弗格森,2000;伊姆斯,2004)。

相似文献

1
Forward reachable sets: Analytically derived properties of connected components for dynamic networks.
Netw Sci (Camb Univ Press). 2017 Sep;5(3):328-354. doi: 10.1017/nws.2017.10. Epub 2017 Jun 29.
2
Edge-based epidemic spreading in degree-correlated complex networks.
J Theor Biol. 2018 Oct 7;454:164-181. doi: 10.1016/j.jtbi.2018.06.006. Epub 2018 Jun 6.
3
Statistical analysis of edges and bredges in configuration model networks.
Phys Rev E. 2020 Jul;102(1-1):012314. doi: 10.1103/PhysRevE.102.012314.
4
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Sociol Methodol. 2014 Aug 1;44(1):273-321. doi: 10.1177/0081175013520159.
5
Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach.
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):1821-1830. doi: 10.1109/TNNLS.2020.2991090. Epub 2021 May 3.
6
Concurrency and reachability in treelike temporal networks.
Phys Rev E. 2019 Dec;100(6-1):062305. doi: 10.1103/PhysRevE.100.062305.
7
Speeding Up Reachability Queries in Public Transport Networks Using Graph Partitioning.
Inf Syst Front. 2022;24(1):11-29. doi: 10.1007/s10796-021-10164-2. Epub 2021 Aug 14.
8
A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
Bull Math Biol. 2016 Dec;78(12):2427-2454. doi: 10.1007/s11538-016-0227-4. Epub 2016 Oct 31.
9
Online Inner Approximation of Reachable Sets of Nonlinear Systems with Diminished Control Authority.
Proc SIAM Conf Control Appl. 2021;2021:9-16. doi: 10.1137/1.9781611976847.2.
10
Structure of shells in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036105. doi: 10.1103/PhysRevE.80.036105. Epub 2009 Sep 9.

引用本文的文献

1
Dynamic contact networks of residents of an urban jail in the era of SARS-CoV-2.
Epidemics. 2024 Jun;47:100772. doi: 10.1016/j.epidem.2024.100772. Epub 2024 May 15.
2
Optimal Physician Shared-Patient Networks and the Diffusion of Medical Technologies.
J Data Sci. 2023 Jul;21(3):578-598. doi: 10.6339/22-jds1064. Epub 2022 Aug 30.
3
Dynamic Contact Networks of Residents of an Urban Jail in the Era of SARS-CoV-2.
medRxiv. 2023 Oct 2:2023.09.29.23296359. doi: 10.1101/2023.09.29.23296359.
6
Concurrency measures in the era of temporal network epidemiology: a review.
J R Soc Interface. 2021 Jun;18(179):20210019. doi: 10.1098/rsif.2021.0019. Epub 2021 Jun 2.
7
Analysis of dynamic contact network of patients with COVID-19 in Shaanxi Province of China.
Sci Rep. 2021 Mar 1;11(1):4889. doi: 10.1038/s41598-021-84428-x.
9
EpiExploreR: A Shiny Web Application for the Analysis of Animal Disease Data.
Microorganisms. 2019 Dec 11;7(12):680. doi: 10.3390/microorganisms7120680.
10
Epidemic potential by sexual activity distributions.
Netw Sci (Camb Univ Press). 2017 Dec;5(4):461-475. doi: 10.1017/nws.2017.3. Epub 2017 Apr 24.

本文引用的文献

1
Concurrency can drive an HIV epidemic by moving R0 across the epidemic threshold.
AIDS. 2015 Jun 1;29(9):1097-103. doi: 10.1097/QAD.0000000000000676.
2
Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16202-7. doi: 10.1073/pnas.1323007111. Epub 2014 Oct 13.
3
SI infection on a dynamic partnership network: characterization of R0.
J Math Biol. 2015 Jul;71(1):1-56. doi: 10.1007/s00285-014-0808-5. Epub 2014 Jul 10.
4
Stochastic epidemics in growing populations.
Bull Math Biol. 2014 May;76(5):985-96. doi: 10.1007/s11538-014-9942-x. Epub 2014 Mar 12.
5
Dynamic concurrent partnership networks incorporating demography.
Theor Popul Biol. 2012 Nov;82(3):229-39. doi: 10.1016/j.tpb.2012.07.001. Epub 2012 Aug 1.
6
Components in time-varying graphs.
Chaos. 2012 Jun;22(2):023101. doi: 10.1063/1.3697996.
7
Edge-based compartmental modelling for infectious disease spread.
J R Soc Interface. 2012 May 7;9(70):890-906. doi: 10.1098/rsif.2011.0403. Epub 2011 Oct 5.
8
Concurrent partnerships, acute infection and HIV epidemic dynamics among young adults in Zimbabwe.
AIDS Behav. 2012 Feb;16(2):312-22. doi: 10.1007/s10461-010-9858-x.
10
Concurrent sexual partnerships and primary HIV infection: a critical interaction.
AIDS Behav. 2011 May;15(4):687-92. doi: 10.1007/s10461-010-9787-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验