Suppr超能文献

基于机器学习在基于智能手机的纸基微流控平台上对人唾液样本中(-)-Δ-四氢大麻酚进行定量分析

Machine Learning-Based Quantification of (-)--Δ-Tetrahydrocannabinol from Human Saliva Samples on a Smartphone-Based Paper Microfluidic Platform.

作者信息

Liang Yan, Zhou Avory, Yoon Jeong-Yeol

机构信息

Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States.

Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States.

出版信息

ACS Omega. 2022 Aug 15;7(34):30064-30073. doi: 10.1021/acsomega.2c03099. eCollection 2022 Aug 30.

Abstract

(-)--Δ-Tetrahydrocannabinol (THC) is a major psychoactive component in cannabis. Despite the recent trends of THC legalization for medical or recreational use in some areas, many THC-driven impairments have been verified. Therefore, convenient, sensitive, quantitative detection of THC is highly needed to improve its regulation and legalization. We demonstrated a biosensor platform to detect and quantify THC with a paper microfluidic chip and a handheld smartphone-based fluorescence microscope. Microfluidic competitive immunoassay was applied with anti-THC-conjugated fluorescent nanoparticles. The smartphone-based fluorescence microscope counted the fluorescent nanoparticles in the test zone, achieving a 1 pg/mL limit of detection from human saliva samples. Specificity experiments were conducted with cannabidiol (CBD) and various mixtures of THC and CBD. No cross-reactivity to CBD was found. Machine learning techniques were also used to quantify the THC concentrations from multiple saliva samples. Multidimensional data were collected by diluting the saliva samples with saline at four different dilutions. A training database was established to estimate the THC concentration from multiple saliva samples, eliminating the sample-to-sample variations. The classification algorithms included -nearest neighbor (-NN), decision tree, and support vector machine (SVM), and the SVM showed the best accuracy of 88% in estimating six different THC concentrations. Additional validation experiments were conducted using independent validation sample sets, successfully identifying positive samples at 100% accuracy and quantifying the THC concentration at 80% accuracy. The platform provided a quick, low-cost, sensitive, and quantitative point-of-care saliva test for cannabis.

摘要

(-)-Δ-四氢大麻酚(THC)是大麻中的主要精神活性成分。尽管最近在一些地区THC已被合法化用于医疗或娱乐用途,但许多由THC导致的损害已得到证实。因此,迫切需要便捷、灵敏、定量地检测THC,以加强对其的监管和合法化。我们展示了一种生物传感器平台,可通过纸质微流控芯片和基于手持智能手机的荧光显微镜来检测和定量THC。微流控竞争免疫分析法采用了与抗THC偶联的荧光纳米颗粒。基于智能手机的荧光显微镜对测试区域中的荧光纳米颗粒进行计数,从人类唾液样本中实现了1 pg/mL的检测限。使用大麻二酚(CBD)以及THC和CBD的各种混合物进行了特异性实验。未发现与CBD有交叉反应。机器学习技术也被用于对多个唾液样本中的THC浓度进行定量。通过用生理盐水以四种不同稀释度稀释唾液样本收集多维数据。建立了一个训练数据库,以估计多个唾液样本中的THC浓度,消除样本间的差异。分类算法包括k近邻(k-NN)、决策树和支持向量机(SVM),其中SVM在估计六种不同THC浓度时显示出88%的最佳准确率。使用独立的验证样本集进行了额外的验证实验,成功以100%的准确率识别出阳性样本,并以80%的准确率对THC浓度进行了定量。该平台为大麻提供了一种快速、低成本、灵敏且定量的即时唾液检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61eb/9434788/70fb32707d54/ao2c03099_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验