文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于唾液细菌拷贝数的机器学习模型预测慢性牙周炎严重程度。

Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based On Salivary Bacterial Copy Number.

机构信息

Department of R&D, Helixco Inc., Ulsan, South Korea.

College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea.

出版信息

Front Cell Infect Microbiol. 2020 Nov 16;10:571515. doi: 10.3389/fcimb.2020.571515. eCollection 2020.


DOI:10.3389/fcimb.2020.571515
PMID:33304856
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7701273/
Abstract

Periodontitis is a widespread chronic inflammatory disease caused by interactions between periodontal bacteria and homeostasis in the host. We aimed to investigate the performance and reliability of machine learning models in predicting the severity of chronic periodontitis. Mouthwash samples from 692 subjects (144 healthy controls and 548 generalized chronic periodontitis patients) were collected, the genomic DNA was isolated, and the copy numbers of nine pathogens were measured using multiplex qPCR. The nine pathogens are as follows: (Pg), (Tf), (Td), (Pi), (Fn), (Cr), (Aa), (Pa), and (Ec). By adding the species one by one in order of high accuracy to find the optimal combination of input features, we developed an algorithm that predicts the severity of periodontitis using four machine learning techniques. The accuracy was the highest when the models classified "healthy" and "moderate or severe" periodontitis (H vs. M-S, average accuracy of four models: 0.93, AUC = 0.96, sensitivity of 0.96, specificity of 0.81, and diagnostic odds ratio = 112.75). One or two red complex pathogens were used in three models to distinguish slight chronic periodontitis patients from healthy controls (average accuracy of 0.78, AUC = 0.82, sensitivity of 0.71, and specificity of 0.84, diagnostic odds ratio = 12.85). Although the overall accuracy was slightly reduced, the models showed reliability in predicting the severity of chronic periodontitis from 45 newly obtained samples. Our results suggest that a well-designed combination of salivary bacteria can be used as a biomarker for classifying between a periodontally healthy group and a chronic periodontitis group.

摘要

牙周炎是一种广泛存在的慢性炎症性疾病,由牙周细菌与宿主内环境之间的相互作用引起。本研究旨在探究机器学习模型在预测慢性牙周炎严重程度中的性能和可靠性。我们收集了 692 名受试者(144 名健康对照和 548 名广泛性慢性牙周炎患者)的漱口水样本,提取基因组 DNA,采用多重 qPCR 检测 9 种病原体的拷贝数。这 9 种病原体分别为:(Pg)、(Tf)、(Td)、(Pi)、(Fn)、(Cr)、(Aa)、(Pa)和(Ec)。通过按准确度从高到低的顺序逐个添加物种,找到预测牙周炎严重程度的最佳输入特征组合,我们利用 4 种机器学习技术开发了一种算法。当模型将“健康”和“中度或重度”牙周炎进行分类时(H 与 M-S,4 种模型的平均准确率:0.93,AUC=0.96,敏感度为 0.96,特异度为 0.81,诊断比值比=112.75),准确率最高。有 3 个模型使用 1 或 2 种红色复合体病原体来区分轻度慢性牙周炎患者和健康对照者(平均准确率为 0.78,AUC=0.82,敏感度为 0.71,特异度为 0.84,诊断比值比=12.85)。尽管整体准确率略有下降,但模型在预测 45 份新获得的样本的慢性牙周炎严重程度方面表现出可靠性。本研究结果表明,精心设计的唾液细菌组合可作为区分牙周健康组和慢性牙周炎组的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/fef042222c8f/fcimb-10-571515-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/5b50e03b4c30/fcimb-10-571515-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/c7536729196f/fcimb-10-571515-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/03f4253b9ef1/fcimb-10-571515-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/fef042222c8f/fcimb-10-571515-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/5b50e03b4c30/fcimb-10-571515-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/c7536729196f/fcimb-10-571515-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/03f4253b9ef1/fcimb-10-571515-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7701273/fef042222c8f/fcimb-10-571515-g004.jpg

相似文献

[1]
Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based On Salivary Bacterial Copy Number.

Front Cell Infect Microbiol. 2020

[2]
Salivary infectious agents and periodontal disease status.

J Periodontal Res. 2011-1-25

[3]
Prevalence and abundance of 9 periodontal pathogens in the saliva of periodontally healthy adults and patients undergoing supportive periodontal therapy.

J Periodontal Implant Sci. 2021-10

[4]
[Detection of putative periodontal pathogens of periodontitis with type 2 diabetes].

Zhonghua Kou Qiang Yi Xue Za Zhi. 2010-6

[5]
Bacterial profile of aggressive periodontitis in Morocco: a cross-sectional study.

BMC Oral Health. 2015-2-24

[6]
Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola / Prevotella intermedia Co-Infection Are Associated with Severe Periodontitis in a Thai Population.

PLoS One. 2015-8-27

[7]
Real-time PCR quantification of 9 periodontal pathogens in saliva samples from periodontally healthy Korean young adults.

J Periodontal Implant Sci. 2018-8-30

[8]
[Study of putative periodontal pathogens colonies in type 2 diabetes with chronic periodontitis].

Shanghai Kou Qiang Yi Xue. 2010-12

[9]
Detection of eight periodontal microorganisms and distribution of Porphyromonas gingivalis fimA genotypes in Chinese patients with aggressive periodontitis.

J Periodontol. 2013-5-7

[10]
Periodontopathogens and human β-defensin-2 expression in gingival crevicular fluid from patients with periodontal disease in Guangxi, China.

J Periodontal Res. 2015-6

引用本文的文献

[1]
Effect of a Probiotic Combination on Clinical and Microbiological Oral Parameters in Head and Neck Cancer Patients: A Randomised Clinical Trial.

Cancers (Basel). 2025-7-25

[2]
Applications of Artificial Intelligence (AI) for Diagnosis of Periodontal/Peri-Implant Diseases: A Narrative Review.

J Oral Rehabil. 2025-8

[3]
Microbial Markers for Diagnosis and Risk Assessment for Periodontal Diseases: A Systematic Literature Search and Narrative Synthesis.

J Clin Periodontol. 2025-8

[4]
Artificial intelligence in dentistry-A review.

Front Dent Med. 2023-2-20

[5]
Automating bone loss measurement on periapical radiographs for predicting the periodontitis stage and grade.

Front Dent Med. 2024-10-10

[6]
Applications of artificial intelligence in regenerative dentistry: promoting stem cell therapy and the scaffold development.

Front Cell Dev Biol. 2024-12-6

[7]
Classification of periodontitis stage and grade using natural language processing techniques.

PLOS Digit Health. 2024-12-13

[8]
Exploring the interplay between Porphyromonas gingivalis KGP gingipain, herpes virus MicroRNA-6, and Icp4 transcript in periodontitis: Computational and clinical insights.

PLoS One. 2024

[9]
Embracing technological revolution: A panorama of machine learning in dentistry.

Med Oral Patol Oral Cir Bucal. 2024-11-1

[10]
Highly accurate measurement of the relative abundance of oral pathogenic bacteria using colony-forming unit-based qPCR.

J Periodontal Implant Sci. 2024-12

本文引用的文献

[1]
Microbial Analysis of Saliva to Identify Oral Diseases Using a Point-of-Care Compatible qPCR Assay.

J Clin Med. 2020-9-11

[2]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[3]
Identification of Salivary Microbiota and Its Association With Host Inflammatory Mediators in Periodontitis.

Front Cell Infect Microbiol. 2019-6-21

[4]
Composition Analysis and Feature Selection of the Oral Microbiota Associated with Periodontal Disease.

Biomed Res Int. 2018-11-15

[5]
Grading system for periodontitis by analyzing levels of periodontal pathogens in saliva.

PLoS One. 2018-11-26

[6]
Role of periodontal therapy in management of common complex systemic diseases and conditions: An update.

Periodontol 2000. 2018-10

[7]
Staging and grading of periodontitis: Framework and proposal of a new classification and case definition.

J Periodontol. 2018-6

[8]
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.

Cancer Genomics Proteomics. 2018

[9]
Salivary biomarker combination prediction model for the diagnosis of periodontitis in a Taiwanese population.

J Formos Med Assoc. 2017-11-9

[10]
The oral microbiome - an update for oral healthcare professionals.

Br Dent J. 2016-11-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索