Suppr超能文献

非自愿广义相加模型

Reluctant Generalised Additive Modelling.

作者信息

Tay J Kenneth, Tibshirani Robert

机构信息

Department of Statistics, Stanford University, Stanford, California, USA.

Department of Biomedical Data Science, Stanford University, Stanford, California, USA.

出版信息

Int Stat Rev. 2020 Dec;88(Suppl 1):S205-S224. doi: 10.1111/insr.12429. Epub 2020 Nov 22.

Abstract

Sparse generalised additive models (GAMs) are an extension of sparse generalised linear models that allow a model's prediction to vary non-linearly with an input variable. This enables the data analyst build more accurate models, especially when the linearity assumption is known to be a poor approximation of reality. Motivated by reluctant interaction modelling, we propose a multi-stage algorithm, called , that can fit sparse GAMs at scale. It is guided by the principle that, if all else is equal, one should prefer a linear feature over a non-linear feature. Unlike existing methods for sparse GAMs, RGAM can be extended easily to binary, count and survival data. We demonstrate the method's effectiveness on real and simulated examples.

摘要

稀疏广义相加模型(GAMs)是稀疏广义线性模型的扩展,它允许模型的预测随输入变量非线性变化。这使数据分析师能够构建更准确的模型,尤其是当已知线性假设与现实相差甚远时。出于对勉强交互建模的考虑,我们提出了一种多阶段算法,称为RGAM,它可以大规模拟合稀疏GAMs。该算法遵循这样的原则:在其他条件相同的情况下,应优先选择线性特征而非非线性特征。与现有的稀疏GAMs方法不同,RGAM可以轻松扩展到二元、计数和生存数据。我们在真实和模拟示例上证明了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61be/9435322/968a2157c474/nihms-1830545-f0008.jpg

相似文献

1
Reluctant Generalised Additive Modelling.非自愿广义相加模型
Int Stat Rev. 2020 Dec;88(Suppl 1):S205-S224. doi: 10.1111/insr.12429. Epub 2020 Nov 22.
4
Group Sparse Additive Models.组稀疏加法模型
Proc Int Conf Mach Learn. 2012;2012:871-878.

本文引用的文献

1
Data-adaptive additive modeling.数据自适应加法建模。
Stat Med. 2019 Feb 20;38(4):583-600. doi: 10.1002/sim.7859. Epub 2018 Jul 16.
2
Fused Lasso Additive Model.融合套索加法模型
J Comput Graph Stat. 2016;25(4):1005-1025. doi: 10.1080/10618600.2015.1073155. Epub 2016 Nov 10.
5
Generalized additive models for medical research.医学研究中的广义相加模型。
Stat Methods Med Res. 1995 Sep;4(3):187-96. doi: 10.1177/096228029500400302.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验