Suppr超能文献

自我意识与刻板印象:准确预测内隐性别刻板印象

Self-Awareness and Stereotypes: Accurate Prediction of Implicit Gender Stereotyping.

机构信息

University Hospital Tübingen, Germany.

University of Cologne, Germany.

出版信息

Pers Soc Psychol Bull. 2023 Dec;49(12):1695-1708. doi: 10.1177/01461672221120703. Epub 2022 Sep 3.

Abstract

Research showing that people can predict the patterns of their implicit evaluations toward social groups has raised questions concerning how widely these findings extend to other domains, such as semantic implicit stereotyping. In a preregistered laboratory study, participants were asked to predict their scores on five implicit gender stereotyping Implicit Associations Tests (IATs). Within-subjects correlations between IAT score predictions and IAT scores showed high levels of accuracy. Although part of the IAT score patterns could be predicted from shared knowledge, own predictions significantly outperformed predictions of random others and normative patterns, suggesting self-awareness beyond reliance on shared knowledge. In line with dual-process models emphasizing that different information is captured by implicit as opposed to explicit measures, predictions explained correlations between implicit and traditional explicit stereotyping measures, and led to acknowledgment of bias. Discussion focuses on understanding conscious awareness of semantic automatic processes and conceptualizations of the cognitions underlying implicit measures.

摘要

研究表明,人们可以预测自己对社会群体的隐性评价模式,这引发了人们的疑问,即这些发现会在多大程度上扩展到其他领域,例如语义内隐刻板印象。在一项预先注册的实验室研究中,参与者被要求预测他们在五个性别刻板印象内隐联想测验(IAT)上的得分。IAT 得分预测与 IAT 得分之间的受试者内相关显示出高度的准确性。虽然部分 IAT 得分模式可以从共同知识中预测,但自己的预测明显优于随机他人和规范模式的预测,这表明自我意识不仅仅依赖于共同知识。与强调不同信息由内隐而非外显测量捕获的双加工模型一致,预测解释了内隐和传统外显刻板印象测量之间的相关性,并导致对偏见的认识。讨论的重点是理解语义自动过程的有意识意识和对内隐测量所依据的认知的概念化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d77/10637100/ffdfc5c1e867/10.1177_01461672221120703-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验