Peng Jiangjun, Wang Yao, Zhang Hongying, Wang Jianjun, Meng Deyu
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5766-5781. doi: 10.1109/TPAMI.2022.3204203. Epub 2023 Apr 3.
It is known that the decomposition in low-rank and sparse matrices (L+S for short) can be achieved by several Robust PCA techniques. Besides the low rankness, the local smoothness (LSS) is a vitally essential prior for many real-world matrix data such as hyperspectral images and surveillance videos, which makes such matrices have low-rankness and local smoothness property at the same time. This poses an interesting question: Can we make a matrix decomposition in terms of L&LSS +S form exactly? To address this issue, we propose in this paper a new RPCA model based on three-dimensional correlated total variation regularization (3DCTV-RPCA for short) by fully exploiting and encoding the prior expression underlying such joint low-rank and local smoothness matrices. Specifically, using a modification of Golfing scheme, we prove that under some mild assumptions, the proposed 3DCTV-RPCA model can decompose both components exactly, which should be the first theoretical guarantee among all such related methods combining low rankness and local smoothness. In addition, by utilizing Fast Fourier Transform (FFT), we propose an efficient ADMM algorithm with a solid convergence guarantee for solving the resulting optimization problem. Finally, a series of experiments on both simulations and real applications are carried out to demonstrate the general validity of the proposed 3DCTV-RPCA model.
众所周知,低秩和稀疏矩阵(简称为L + S)的分解可以通过几种鲁棒主成分分析(Robust PCA)技术来实现。除了低秩性之外,局部平滑性(LSS)对于许多实际的矩阵数据(如高光谱图像和监控视频)来说是至关重要的先验信息,这使得此类矩阵同时具有低秩性和局部平滑性。这就引出了一个有趣的问题:我们能否精确地按照L&LSS + S形式进行矩阵分解?为了解决这个问题,本文通过充分利用和编码这种联合低秩和局部平滑矩阵背后的先验表达式,提出了一种基于三维相关全变差正则化(简称为3DCTV - RPC A)的新RPCA模型。具体而言,通过对高尔夫球方案的一种改进,我们证明了在一些温和假设下,所提出的3DCTV - RPCA模型能够精确地分解两个分量,这应该是所有结合低秩性和局部平滑性的相关方法中的首个理论保证。此外,通过利用快速傅里叶变换(FFT),我们提出了一种具有可靠收敛保证的高效交替方向乘子法(ADMM)算法来求解由此产生的优化问题。最后,进行了一系列关于模拟和实际应用的实验,以证明所提出的3DCTV - RPCA模型的普遍有效性。