Suppr超能文献

保证张量恢复融合低秩性与平滑性。

Guaranteed Tensor Recovery Fused Low-rankness and Smoothness.

作者信息

Wang Hailin, Peng Jiangjun, Qin Wenjin, Wang Jianjun, Meng Deyu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10990-11007. doi: 10.1109/TPAMI.2023.3259640. Epub 2023 Aug 7.

Abstract

Tensor recovery is a fundamental problem in tensor research field. It generally requires to explore intrinsic prior structures underlying tensor data, and formulate them as certain forms of regularization terms for guiding a sound estimate of the restored tensor. Recent researches have made significant progress by adopting two insightful tensor priors, i.e., global low-rankness (L) and local smoothness (S), which are always encoded as a sum of two separate regularizers into recovery models. However, unlike the primary theoretical developments on low-rank tensor recovery, these joint "L+S" models have no theoretical exact-recovery guarantees yet, making the methods lack reliability in real practice. To this crucial issue, in this work, we build a unique regularizer termed as tensor correlated total variation (t-CTV), which essentially encodes both L and S priors of a tensor simultaneously. Especially, by equipping t-CTV into the recovery models, we can rigorously prove the exact recovery guarantees for two typical tensor recovery tasks, i.e., tensor completion and tensor robust principal component analysis. To the best of our knowledge, this should be the first exact-recovery results among all related "L+S" methods for tensor recovery. We further propose ADMM algorithms with fine convergence to solve the proposed models. Significant recovery accuracy improvements are observed in extensive experiments. Typically, our method achieves a workable performance when the missing rate is extremely large, e.g., 99.5%, for the color image inpainting task, while all its peers totally fail in such a challenging case. Code is released at https://github.com/wanghailin97.

摘要

张量恢复是张量研究领域中的一个基本问题。它通常需要探索张量数据背后的内在先验结构,并将其表述为某种形式的正则化项,以指导对恢复张量的合理估计。最近的研究通过采用两种有深刻见解的张量先验取得了重大进展,即全局低秩性(L)和局部平滑性(S),它们总是被编码为两个单独正则化器的和并纳入恢复模型。然而,与低秩张量恢复的主要理论发展不同,这些联合的“L + S”模型尚无理论上的精确恢复保证,这使得这些方法在实际应用中缺乏可靠性。针对这一关键问题,在这项工作中,我们构建了一个独特的正则化器,称为张量相关全变差(t - CTV),它本质上同时对张量的L和S先验进行编码。特别是,通过将t - CTV应用于恢复模型,我们可以严格证明两个典型张量恢复任务,即张量补全和张量鲁棒主成分分析的精确恢复保证。据我们所知,这应该是所有相关“L + S”张量恢复方法中的首个精确恢复结果。我们还提出了具有良好收敛性的交替方向乘子法(ADMM)算法来求解所提出的模型。在大量实验中观察到显著的恢复精度提升。例如,在彩色图像修复任务中,当缺失率极大,如99.5%时,我们的方法仍能实现可行的性能,而所有同类方法在这种具有挑战性的情况下完全失败。代码已发布在https://github.com/wanghailin97。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验