Suppr超能文献

计算机辅助诊断工具对 CT 肺结节进行风险分层的临床影响和推广性。

Clinical Impact and Generalizability of a Computer-Assisted Diagnostic Tool to Risk-Stratify Lung Nodules With CT.

机构信息

Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada; Scientific Director of the National Medical Imaging Clinic in Saskatoon.

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.

出版信息

J Am Coll Radiol. 2023 Feb;20(2):232-242. doi: 10.1016/j.jacr.2022.08.006. Epub 2022 Sep 3.

Abstract

OBJECTIVE

To evaluate whether an imaging classifier for radiology practice can improve lung nodule classification and follow-up.

METHODS

A machine learning classifier was developed and trained using imaging data from the National Lung Screening Trial (NSLT) to produce a malignancy risk score (malignancy Similarity Index [mSI]) for individual lung nodules. In addition to NLST cohorts, external cohorts were developed from a tertiary referral lung cancer screening program data set and an external nonscreening data set of all nodules detected on CT. Performance of the mSI combined with Lung-RADS was compared with Lung-RADS alone and the Mayo and Brock risk calculators.

RESULTS

We analyzed 963 subjects and 1,331 nodules across these cohorts. The mSI was comparable in accuracy (area under the curve = 0.89) to existing clinical risk models (area under the curve = 0.86-0.88) and independently predictive in the NLST cohort of 704 nodules. When compared with Lung-RADS, the mSI significantly increased sensitivity across all cohorts (25%-117%), with significant increases in specificity in the screening cohorts (17%-33%). When used in conjunction with Lung-RADS, use of mSI would result in earlier diagnoses and reduced follow-up across cohorts, including the potential for early diagnosis in 42% of malignant NLST nodules from prior-year CT scans.

CONCLUSION

A computer-assisted diagnosis software improved risk classification from chest CTs of screening and incidentally detected lung nodules compared with Lung-RADS. mSI added predictive value independent of existing radiological and clinical variables. These results suggest the generalizability and potential clinical impact of a tool that is straightforward to implement in practice.

摘要

目的

评估放射科实践中的成像分类器是否能提高肺结节分类和随访的效果。

方法

使用国家肺癌筛查试验(NLST)的影像学数据开发和训练机器学习分类器,为每个肺结节生成一个恶性肿瘤风险评分(恶性肿瘤相似度指数[mSI])。除了 NLST 队列外,还从一个三级转诊肺癌筛查计划数据集和一个所有 CT 检测到的结节的外部非筛查数据集开发了外部队列。将 mSI 与 Lung-RADS 相结合的性能与 Lung-RADS 单独使用以及 Mayo 和 Brock 风险计算器进行了比较。

结果

我们对这些队列中的 963 名患者和 1331 个结节进行了分析。mSI 的准确性与现有的临床风险模型相当(曲线下面积=0.89)(曲线下面积=0.86-0.88),并且在 NLST 队列的 704 个结节中具有独立的预测能力。与 Lung-RADS 相比,mSI 在所有队列中显著提高了敏感性(25%-117%),在筛查队列中特异性显著提高(17%-33%)。当与 Lung-RADS 联合使用时,mSI 的使用将在所有队列中导致更早的诊断和减少随访,包括在先前年度 CT 扫描中 42%的恶性 NLST 结节中可能实现早期诊断。

结论

与 Lung-RADS 相比,计算机辅助诊断软件提高了筛查和偶然发现的肺结节的 CT 扫描的风险分类。mSI 增加了独立于现有影像学和临床变量的预测价值。这些结果表明,一种易于在实践中实施的工具具有普遍性和潜在的临床影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验