Lorenzett Ezequiel, da Campo Yan A S, Neto Milton A F, Burgo Thiago A L
Department of Chemistry and Federal University of Santa Maria. Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.
Department of Physics, Federal University of Santa Maria. Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.
Nat Commun. 2025 Aug 19;16(1):7727. doi: 10.1038/s41467-025-61566-8.
The spontaneous electrification of surfaces and interfaces is a widespread phenomenon that produces unexpected effects in chemical reactivity and mass charge transfer, revealed in abundant literature over the past twenty years. The pervasive presence of electrostatic charges originates from many sources, including friction, mechanochemical reactions, phase change, flexoelectricity, and others. Since fused deposition modeling undergoes most well-known electrification mechanisms, it would be not surprising that 3D-printed objects display large amounts of charge. Here we uncover the hitherto unexplored realm of electrostatic charging in 3D printing, underscores the impact of printing parameters on charge generation in polymers. Substrates, printing speed, temperature, and printing direction each exert distinct impacts on charge buildup, depending upon the material used for printing. We also develop simple protocols employing common multimeters for charge monitoring, while substrates subjected to corona charging or triboelectrification demonstrate effective methods for charge control or mitigation. An original development is achieved by demonstrating the ability to print quasi-electrets, indicating a potential revolution in electret technology. The implications of these findings establish the groundwork for advancements in 3D printing technology and electrostatics, creating new scientific opportunities for a better understanding of matter.
表面和界面的自发电极化是一种普遍现象,在化学反应性和质量电荷转移中会产生意想不到的效果,这在过去二十年的大量文献中都有揭示。静电荷的普遍存在源于多种来源,包括摩擦、机械化学反应、相变、挠曲电效应等。由于熔融沉积建模涉及最著名的起电机制,3D打印物体显示出大量电荷也就不足为奇了。在这里,我们揭示了3D打印中迄今为止尚未探索的静电荷领域,强调了打印参数对聚合物中电荷产生的影响。基材、打印速度、温度和打印方向对电荷积累都有不同的影响,这取决于用于打印的材料。我们还开发了使用普通万用表进行电荷监测的简单方法,而经过电晕充电或摩擦起电的基材则展示了有效的电荷控制或减轻方法。通过展示打印准驻极体的能力实现了一项原创性进展,这表明驻极体技术可能发生革命。这些发现的意义为3D打印技术和静电学的进步奠定了基础,为更好地理解物质创造了新的科学机遇。