Borrmann Fabian, Tsuda Takuya, Guskova Olga, Kiriy Nataliya, Hoffmann Cedric, Neusser David, Ludwigs Sabine, Lappan Uwe, Simon Frank, Geisler Martin, Debnath Bipasha, Krupskaya Yulia, Al-Hussein Mahmoud, Kiriy Anton
Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, 01069, Dresden, Germany.
Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062, Dresden, Germany.
Adv Sci (Weinh). 2022 Nov;9(31):e2203530. doi: 10.1002/advs.202203530. Epub 2022 Sep 5.
The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective "in-water" applications is developed. A combined experimental-theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10 S cm under ambient conditions and 10 S cm in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced "collapse" of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
近年来,对带有萘二亚胺(NDI)嵌段的电子导电π共轭聚合物的理解和应用取得了显著进展。由于主聚合物链的强缺电子性以及带正电侧基的存在,稳定了n掺杂主链的负电荷,这类聚合物表现出易于进行n掺杂的特性。在此,开发了一种用于预期“水中”应用的n型导电NDI聚合物,其n掺杂态具有更高的稳定性。采用实验与理论相结合的方法来确定控制掺杂和电子传输过程的关键特征和参数。通过电化学测量和掺杂研究证实了该聚合物在水中具有良好的还原能力和热力学稳定性。这种材料在环境条件下还表现出10 S cm 的高电导率,在真空中为10 S cm 。该模型解释了各种掺杂剂的稳定作用。模拟结果表明,在带有部分负电荷的核心上,带正电的侧链因掺杂而发生显著的“塌陷”。这解释了实验中观察到的层间距减小现象。这项研究从根本上为实现n掺杂态在水中的热力学稳定性和聚合物的高电子导电性开辟了一条新途径。