Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Int Forum Allergy Rhinol. 2023 May;13(5):886-898. doi: 10.1002/alr.23083. Epub 2022 Sep 18.
Histopathology of nasal polyps contains rich prognostic information, which is difficult to extract objectively. In the present study, we aimed to develop a prognostic indicator of patient outcomes by analyzing scanned conventional hematoxylin and eosin (H&E)-stained slides alone using deep learning.
An interpretable supervised deep learning model was developed using 185 H&E-stained whole-slide images (WSIs) of nasal polyps, each from a patient randomly selected from the pool of 232 patients who underwent endoscopic sinus surgery at the First Affiliated Hospital of Sun Yat-Sen University (internal cohort). We internally validated the model on a holdout dataset from the internal cohort (47 H&E-stained WSIs) and externally validated the model on 122 H&E-stained WSIs from the Seventh Affiliated Hospital of Sun Yat-Sen University and the University of Hong Kong-Shenzhen Hospital (external cohort). A poor prognosis score (PPS) was established to evaluate patient outcomes, and then risk activation mapping was applied to visualize the histopathological features underlying PPS.
The model yielded a patient-level sensitivity of 79.5%, and specificity of 92.3%, with areas under the receiver operating characteristic curve of 0.943, on the multicenter external cohort. The predictive ability of PPS was superior to that of conventional tissue eosinophil number. Notably, eosinophil infiltration, goblet cell hyperplasia, glandular hyperplasia, squamous metaplasia, and fibrin deposition were identified as the main underlying features of PPS.
Our deep learning model is an effective method for decoding pathological images of nasal polyps, providing a valuable solution for disease prognosis prediction and precise patient treatment.
鼻息肉的组织病理学包含丰富的预后信息,但这些信息很难客观提取。本研究旨在通过分析单独使用深度学习对常规苏木精和伊红(H&E)染色的幻灯片,建立一种预测患者结局的预后指标。
使用来自中山大学附属第一医院(内部队列) 232 名接受鼻内镜鼻窦手术患者的 185 张 H&E 染色全切片图像(WSIs),建立一个可解释的有监督深度学习模型。我们在内部队列的一个预留数据集(47 张 H&E 染色 WSIs)上对模型进行内部验证,并在中山大学第七附属医院和香港中文大学深圳医院的 122 张 H&E 染色 WSIs(外部队列)上对模型进行外部验证。建立预后不良评分(PPS)来评估患者结局,然后应用风险激活映射来可视化 PPS 所依据的组织病理学特征。
该模型在多中心外部队列中的患者水平敏感性为 79.5%,特异性为 92.3%,接受者操作特征曲线下面积为 0.943。PPS 的预测能力优于常规组织嗜酸性粒细胞计数。值得注意的是,嗜酸性粒细胞浸润、杯状细胞增生、腺体增生、鳞状化生和纤维蛋白沉积被确定为 PPS 的主要潜在特征。
我们的深度学习模型是解码鼻息肉病理图像的有效方法,为疾病预后预测和精确的患者治疗提供了有价值的解决方案。