Suppr超能文献

异柠檬酸脱氢酶(IDH)突变型胶质瘤的高效诊断:1p/19qNET利用弱监督学习评估1p/19q共缺失状态。

Efficient diagnosis of IDH-mutant gliomas: 1p/19qNET assesses 1p/19q codeletion status using weakly-supervised learning.

作者信息

Kim Gi Jeong, Lee Tonghyun, Ahn Sangjeong, Uh Youngjung, Kim Se Hoon

机构信息

Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Medicine, Yonsei University Graduate School, Seoul, Republic of Korea.

出版信息

NPJ Precis Oncol. 2023 Sep 16;7(1):94. doi: 10.1038/s41698-023-00450-4.

Abstract

Accurate identification of molecular alterations in gliomas is crucial for their diagnosis and treatment. Although, fluorescence in situ hybridization (FISH) allows for the observation of diverse and heterogeneous alterations, it is inherently time-consuming and challenging due to the limitations of the molecular method. Here, we report the development of 1p/19qNET, an advanced deep-learning network designed to predict fold change values of 1p and 19q chromosomes and classify isocitrate dehydrogenase (IDH)-mutant gliomas from whole-slide images. We trained 1p/19qNET on next-generation sequencing data from a discovery set (DS) of 288 patients and utilized a weakly-supervised approach with slide-level labels to reduce bias and workload. We then performed validation on an independent validation set (IVS) comprising 385 samples from The Cancer Genome Atlas, a comprehensive cancer genomics resource. 1p/19qNET outperformed traditional FISH, achieving R values of 0.589 and 0.547 for the 1p and 19q arms, respectively. As an IDH-mutant glioma classifier, 1p/19qNET attained AUCs of 0.930 and 0.837 in the DS and IVS, respectively. The weakly-supervised nature of 1p/19qNET provides explainable heatmaps for the results. This study demonstrates the successful use of deep learning for precise determination of 1p/19q codeletion status and classification of IDH-mutant gliomas as astrocytoma or oligodendroglioma. 1p/19qNET offers comparable results to FISH and provides informative spatial information. This approach has broader applications in tumor classification.

摘要

准确识别胶质瘤中的分子改变对其诊断和治疗至关重要。尽管荧光原位杂交(FISH)能够观察到多样且异质的改变,但由于分子方法的局限性,其本质上耗时且具有挑战性。在此,我们报告了1p/19qNET的开发,这是一个先进的深度学习网络,旨在预测1p和19q染色体的倍数变化值,并从全切片图像中对异柠檬酸脱氢酶(IDH)突变型胶质瘤进行分类。我们在来自288名患者的发现集(DS)的下一代测序数据上训练了1p/19qNET,并采用带有玻片水平标签的弱监督方法来减少偏差和工作量。然后,我们在一个独立验证集(IVS)上进行验证,该验证集包含来自癌症基因组图谱(一个全面的癌症基因组学资源)的385个样本。1p/19qNET的表现优于传统FISH,1p和19q臂的R值分别为0.589和0.547。作为IDH突变型胶质瘤分类器,1p/19qNET在DS和IVS中的曲线下面积(AUC)分别为0.930和0.837。1p/19qNET的弱监督性质为结果提供了可解释的热图。本研究证明了深度学习在精确确定1p/19q共缺失状态以及将IDH突变型胶质瘤分类为星形细胞瘤或少突胶质细胞瘤方面的成功应用。1p/19qNET提供了与FISH相当的结果,并提供了有用的空间信息。这种方法在肿瘤分类中具有更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae1c/10505231/83bd3948d228/41698_2023_450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验