Suppr超能文献

时间信号驱动细胞间信息网络的出现。

Temporal signals drive the emergence of multicellular information networks.

机构信息

Department of Physics, Oregon State University, Corvallis, OR 97331.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2202204119. doi: 10.1073/pnas.2202204119. Epub 2022 Sep 6.

Abstract

Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood. Here we investigate the calcium dynamics of neuronal cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic devices. Using Granger inference to reconstruct the underlying causal relations between the cells, we find that the cells self-organize into spatially decentralized and temporally stationary networks to support information transfer via gap junction channels. The connectivity of the causal networks depends on the temporal profile of the external stimuli, where short periods, or long periods with small duty fractions, lead to reduced connectivity and fractured network topology. We build a theoretical model based on communicating excitable units that reproduces our observations. The model further predicts that connectivity of the causal network is maximal at an optimal communication strength, which is confirmed by the experiments. Together, our results show that information transfer between neuronal cells is externally regulated by the temporal profile of the stimuli and internally regulated by cell-cell communication.

摘要

细胞间的信息传递

细胞间的协调响应对于多细胞生物至关重要。为了克服细胞间异质性和单个细胞内信号动态的噪声障碍,细胞必须有效地与同伴交换信息。然而,由外部信号驱动的集体信息传递的动力学和机制仍知之甚少。

在这里,我们研究了在微流控设备中形成连续单层并对循环 ATP 刺激做出反应的神经元细胞的钙动力学。我们使用格兰杰因果推断来重建细胞之间的潜在因果关系,发现细胞自我组织成空间分散和时间静止的网络,通过缝隙连接通道支持信息传递。因果网络的连通性取决于外部刺激的时间分布,其中短时间段或具有小占空比的长时间段会导致连通性降低和网络拓扑断裂。我们基于可通信兴奋单元构建了一个理论模型,该模型再现了我们的观察结果。该模型进一步预测,因果网络的连通性在最佳通信强度下达到最大值,这通过实验得到了证实。

总之,我们的结果表明,神经元细胞之间的信息传递受到刺激时间分布的外部调节和细胞间通讯的内部调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8236/9477235/0d73f2ff1f99/pnas.2202204119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验