Suppr超能文献

通信塑造多细胞网络中的感官反应。

Communication shapes sensory response in multicellular networks.

作者信息

Potter Garrett D, Byrd Tommy A, Mugler Andrew, Sun Bo

机构信息

Department of Physics, Oregon State University, Corvallis, OR 97331;

Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907.

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10334-9. doi: 10.1073/pnas.1605559113. Epub 2016 Aug 29.

Abstract

Collective sensing by interacting cells is observed in a variety of biological systems, and yet, a quantitative understanding of how sensory information is collectively encoded is lacking. Here, we investigate the ATP-induced calcium dynamics of monolayers of fibroblast cells that communicate via gap junctions. Combining experiments and stochastic modeling, we find that increasing the ATP stimulus increases the propensity for calcium oscillations, despite large cell-to-cell variability. The model further predicts that the oscillation propensity increases with not only the stimulus, but also the cell density due to increased communication. Experiments confirm this prediction, showing that cell density modulates the collective sensory response. We further implicate cell-cell communication by coculturing the fibroblasts with cancer cells, which we show act as "defects" in the communication network, thereby reducing the oscillation propensity. These results suggest that multicellular networks sit at a point in parameter space where cell-cell communication has a significant effect on the sensory response, allowing cells to simultaneously respond to a sensory input and the presence of neighbors.

摘要

在多种生物系统中都观察到了相互作用的细胞进行集体感知的现象,然而,目前仍缺乏对感官信息如何进行集体编码的定量理解。在此,我们研究了通过间隙连接进行通信的成纤维细胞单层在ATP诱导下的钙动力学。结合实验和随机建模,我们发现尽管细胞间存在很大差异,但增加ATP刺激会增加钙振荡的倾向。该模型进一步预测,振荡倾向不仅会随着刺激增加,还会因通信增加导致的细胞密度增加而增加。实验证实了这一预测,表明细胞密度会调节集体感官反应。我们通过将成纤维细胞与癌细胞共培养进一步证明了细胞间通信的作用,我们发现癌细胞在通信网络中充当“缺陷”,从而降低了振荡倾向。这些结果表明,多细胞网络处于参数空间中的一个点,在这个点上细胞间通信对感官反应有显著影响,使细胞能够同时对感官输入和邻居的存在做出反应。

相似文献

1
Communication shapes sensory response in multicellular networks.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10334-9. doi: 10.1073/pnas.1605559113. Epub 2016 Aug 29.
2
Spatial-temporal dynamics of collective chemosensing.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7753-8. doi: 10.1073/pnas.1121338109. Epub 2012 May 7.
3
Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells.
J R Soc Interface. 2015 Jul 6;12(108):20150140. doi: 10.1098/rsif.2015.0140.
4
Network characteristics of collective chemosensing.
Phys Rev Lett. 2013 Apr 12;110(15):158103. doi: 10.1103/PhysRevLett.110.158103. Epub 2013 Apr 9.
5
Gap junctional communication modulates agonist-induced calcium oscillations in transfected HeLa cells.
J Cell Sci. 2004 Feb 29;117(Pt 6):881-7. doi: 10.1242/jcs.00942. Epub 2004 Feb 3.
6
Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip.
Anal Bioanal Chem. 2013 Jan;405(1):307-14. doi: 10.1007/s00216-012-6447-z. Epub 2012 Oct 6.
7
Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E679-88. doi: 10.1073/pnas.1516503113. Epub 2016 Jan 20.
9
An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation.
Cell Calcium. 2010 Mar;47(3):234-41. doi: 10.1016/j.ceca.2009.12.005. Epub 2010 Jan 8.
10
Analysis of intercellular calcium signaling using microfluidic adjustable laminar flow for localized chemical stimulation.
Anal Chim Acta. 2012 Apr 6;721:104-9. doi: 10.1016/j.aca.2012.01.053. Epub 2012 Feb 3.

引用本文的文献

1
Collective Dynamics of Frustrated Biological Neuron Networks.
PRX Life. 2025 Jul-Sep;3(3). doi: 10.1103/1258-cl48. Epub 2025 Jul 2.
2
The collective dynamics of frustrated biological neuron networks.
Res Sq. 2024 Apr 5:rs.3.rs-4006823. doi: 10.21203/rs.3.rs-4006823/v1.
3
Functional characteristics of hub and wave-initiator cells in β cell networks.
Biophys J. 2023 Mar 7;122(5):784-801. doi: 10.1016/j.bpj.2023.01.039. Epub 2023 Feb 2.
4
Temporal signals drive the emergence of multicellular information networks.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2202204119. doi: 10.1073/pnas.2202204119. Epub 2022 Sep 6.
6
GPCR mediated control of calcium dynamics: A systems perspective.
Cell Signal. 2020 Oct;74:109717. doi: 10.1016/j.cellsig.2020.109717. Epub 2020 Jul 22.
7
Spiral Wave Propagation in Communities with Spatially Correlated Heterogeneity.
Biophys J. 2020 Apr 7;118(7):1721-1732. doi: 10.1016/j.bpj.2020.02.007. Epub 2020 Feb 26.
8
Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture.
Biomed Res Int. 2019 Feb 21;2019:8647121. doi: 10.1155/2019/8647121. eCollection 2019.
9
Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment.
Chem Rev. 2017 Oct 25;117(20):12764-12850. doi: 10.1021/acs.chemrev.7b00094. Epub 2017 Oct 9.
10
Therapeutic targeting of dysregulated cellular communication.
Ann Transl Med. 2017 May;5(10):222. doi: 10.21037/atm.2017.03.62.

本文引用的文献

2
Noise facilitates transcriptional control under dynamic inputs.
Cell. 2015 Jan 29;160(3):381-92. doi: 10.1016/j.cell.2015.01.013.
3
Systems biology. Accurate information transmission through dynamic biochemical signaling networks.
Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.
4
Network characteristics of collective chemosensing.
Phys Rev Lett. 2013 Apr 12;110(15):158103. doi: 10.1103/PhysRevLett.110.158103. Epub 2013 Apr 9.
5
Information-based fitness and the emergence of criticality in living systems.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10095-100. doi: 10.1073/pnas.1319166111. Epub 2014 Jun 30.
6
Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes.
Sci Signal. 2014 Jun 24;7(331):ra59. doi: 10.1126/scisignal.2005237.
7
Morphogenesis at criticality.
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3683-8. doi: 10.1073/pnas.1324186111. Epub 2014 Feb 10.
8
Gap junction and hemichannel-independent actions of connexins on cell and tissue functions--an update.
FEBS Lett. 2014 Apr 17;588(8):1186-92. doi: 10.1016/j.febslet.2014.01.001. Epub 2014 Jan 14.
9
Detecting adenosine triphosphate in the pericellular space.
Interface Focus. 2013 Jun 6;3(3):20120101. doi: 10.1098/rsfs.2012.0101.
10
Encoding and decoding cellular information through signaling dynamics.
Cell. 2013 Feb 28;152(5):945-56. doi: 10.1016/j.cell.2013.02.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验